2024年

安全衛生ハンドブック

第14版

愛媛大学工学部

https://www.eng.ehime-u.ac.jp/

工学部安全衛生委員会

https://www.eng.ehime-u.ac.jp/shc/

医療施設・病院案内

総合健康センター

愛大ミューズ 南側1階

(内線9193), TEL(089)-927-9193

受付時間:平日8:30~16:30 利用時間:平日8:30~17:00 ※土・日・祝日・夏季休業・年末年始の休日等を除く。

	病院名	TEL
1	松山赤十字病院	089-924-1111
2	井手整形外科医院	089-941-2191
3	桑折皮膚科・内科	089-923-0813
4	末光耳鼻咽喉科	089-924-8733
5	とよしま胃腸内 科クリニック	089-924-2936
6	浦屋医院	089-943-0150
7	松山まどんな病院	089-936-2461

松山地区 救急指定病院

医療機関名	住 所 (松山市)	電 話
松山赤十字病院	文京町1	089-924-1111
松山まどんな病院	喜与町1-7-1	089-936-2461
奥島病院	道後町2丁目2-1	089-925-2500
野本記念病院	三番町5丁目12-1	089-943-0151
愛媛医療センター	東温市横河原366	089-964-2411
済生会松山病院	山西町880-2	089-951-6111
松山笠置記念心臟血管病院	末広町18-2	089-941-2288
松山市民病院	大手町2丁目6-5	089-943-1151
梶浦病院	三番町4丁目4-5	089-943-2208
愛媛生協病院	来住町1091-1	089-976-7001
平成脳神経外科病院	北井門2丁目7-28	089-905-0011
松山城東病院	松末2丁目19-36	089-943-7717
南松山病院	朝生田町1丁目3-10	089-941-8255
渡辺病院	空港通7-13-3	089-973-0111

以下のQRコードで 松山市の「救急医療 機関などのご案内」 にアクセスできます。

目 次

まえ	がき	5
はじ	めに	7
1. 煲	車康管理	11
1. 1	健康管理	11
1. 2	健康診断	11
1.3	総合健康センターでの健康相談	11
1.4	交通安全	12
1. 5	参考文献	13
2. 多	そ全に実験・実習をするために	17
2. 1	整理・整頓・清掃・清潔	17
2. 2	実験・実習を行う前に	18
2. 3	作業にあたって	18
2.4	電気器具の取扱い	18
2.5	機械類の安全運転について	21
2.6	化学実験の一般的注意と化学物質の取扱い	23
2. 7	運搬作業について	26
2.8	転倒災害の防止について	27
	5火と消火	
3. 1	火災について	31
	火災を起こさないためには	
3. 3	火災予防	31
	火災が起こったとき	
	消火器の種類と取扱い方	
3. 6	爆発が起こったとき	34
	避難	
3.8	休日及び夜間の通報連絡	
	也震対策	
	地震にそなえて	
	地震が発生したらどうするか	
	(身事故、ケガについて	
	人身事故があった場合	
	薬品によるケガ	
5. 3	出血を伴う外傷	
	火傷	
5. 5	打撲・捻挫	46

	5.	6	感電	46
	5.	7	体位管理	46
	5.	8	心肺蘇生法の手順	47
	5.	9	各種薬品に対する処置	55
6		休	日及び夜間における無人実験・無人運転	59
	6.	1	無人運転	59
7		X	線発生装置、レーザ装置等に関わる安全	63
	7.	1	X線発生のしくみ	63
	7.	2	人体への影響	63
	7.	3	X線発生装置の使用に関する注意	63
	7.	4	走査電顕・透過電顕などに対する注意	64
	7.	5	レーザ装置の取扱い	64
8		高	圧ガス容器の取扱い	73
	8.	1	高圧ガス容器について	73
	8.	2	高圧ガス容器の購入・管理について	74
	8.	3	高圧ガス容器の移動・保管等について	74
	8.	4	高圧ガスの使用について	75
	8.	5	問い合わせ・連絡先	76
9		液	が体窒素などの取扱い	79
	9.	1	液体窒素の取扱いにおける注意	79
	9.	2	酸欠と凍傷の処置・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	80
	9.	3	液体ヘリウムの取扱いにおける注意	80
1	0		振動、粉塵対策について	83
	10). 1	振動対策について	83
	10). 2	2 粉塵対策について	83
1	1		情報機器作業について	87
	11	l. 1	情報機器作業に伴う健康障害	87
	11	1.2	2 情報機器作業に伴う健康障害の現状	87
	11	l. 3	3 情報機器作業に伴う健康障害への対策	87
	11	l. 4	l 参考文献 ·····	87
1	2		機械系の安全衛生	91
	12	2. 1	一般的注意事項	91
	12	2. 2	2 工作機械	93
	12	2. 3	3 その他の機械類等	98
	12	2. 4	1 実習工場の利用時の安全	100
	12	2. 5	5 機械操作時の事故例	100
1	3		電気系での安全	105
	13	3. 1	一般的注意注意事項	105

13.2 事故例
14. 化学系の安全・衛生117
14.1 基本的な注意事項117
14.2 薬品の取扱い118
14.3 廃液の処理119
14.4 ドラフトチャンバー130
14.5 薬品類による事故例130
14.6 ガラス器具の取扱い130
14.7 ガラス器具による事故例132
14.8 電気を安全に使用するために132
14.9 電動機器の取扱い133
14.10 事故が発生した時の措置133
14.11 G H S ······134
1 5. 生物化学の安全・衛生139
15.1 一般的心構え139
15.2 試薬139
15.3 機器等の取扱いについて140
15.4 生物材料の取扱いについて
16. 排水・廃液の取扱いについて
16.1 安全な実験のために149
16.2 廃液の分類150
16.3 廃液の取扱いについての注意150
16.4 収集方法
17. 各種金属の取扱注意一覧表160
18. 事故報告書165
1 9. 安全衛生学生委員169
2 0. 安全衛生規程関係175
あとがき190

安全衛生ハンドブック:まえがき

これから工学部での学生生活をスタートさせる新入生の皆さん。学生生活を健康で安全に過ごすため、「安全衛生ハンドブック」をお届けします。

皆さんが安全で有意義な学生生活を送るためにまず大切なこと。それは、皆さんそれぞれが日頃の生活習慣に気をつけ、心とからだの健康づくりに努めることです。さらに、いつ皆さんに降りかかるかも知れない交通事故や地震・台風といった災難から自分自身を守るための方策を身につけ、いざという時のための備えをしておくことも大切です。

このような一般生活上の安全衛生への対応に加え、工学部では特に注意しなければならない点があります。それは、工学部では全学科のカリキュラムに実験・実習科目や卒業研究が組み込まれており、そこでは実験機器、機械、薬品等を実際に取り扱うことになることから、皆さんは常に危険を意識し、細心の注意を払った行動をとる必要があるということです。

この「安全衛生ハンドブック」には、健康管理、防災対策、実験・実習の安全面での留意 事項等をわかり易く記述しています。その内容は、我々が交通事故に会わないために守る 交通安全ルールと同様、学生生活あるいは将来就業してからの生活を健康で安全に過ごす ための基本的な安全衛生ルールとも言うべきものです。必ず何度も読み返して自分のもの にしてください。

皆さんの学生生活が、心身ともに健全で、災害のない、有意義で充実したものになることを切望しています。

令和6年4月

工学部 安全衛生管理責任者

はじめに

工学部では、多くの実験や実習をカリキュラムの中で実施しています。 4年生になると、卒業研究を行います。皆さんが、ケガをせず安全にこれらの実験や実習を行うために、守らなければならない約束ごとや手順があります。また、周囲の環境や人にも配慮するための決まりもあります。これらには、愛媛大学や工学部独自の規則もあり、労働安全衛生法や関連する法令で決められているものもあります。この安全衛生ハンドブックは、工学部の学生が実験や実習で守らなければならない規則と、学生生活を健康で安全に過ごすために守らなければならない約束ごとをまとめたものです。また、事故が発生したときの対応法を知っておくことも重要です。このハンドブックには、一般的な事故防止法と事故が発生したときの対応についても書かれています。これを良く読み、実験や実習、卒業研究を行う際などに事故のない学生生活を送ってください。

第1章では、日常の健康管理について書いてあります。自己の健康を管理し、維持することは豊かな学生時代を送る基礎であり、卒業し社会人として活躍する上で必要不可欠な事柄です。

第2章では、安全に実験・実習を行う上で必要な事柄が示されています。事故は、様々な事柄によって起きる可能性があります。それは、装置や機器の使用法を理解してなかった、作業方法を間違えた、その操作の意味を理解していなかった、扱う物質の性質を知っていなかった、間違えた物を使った等何かの原因により起きます。事前に良く調べ、理解し、作業に取り掛かることが求められます。

第3章、第4章では、火災、地震などに対する注意が示されています。日頃から万が一 に備え、火災と地震に対する対策をとっておき冷静に対応することが肝心です。

第5章では、不幸にして事故等が起こったときの応急処置を含めた対応を示しています。 実験は必ず複数の人と作業を行い、万が一負傷者が出た場合、冷静かつ迅速に対処する必要があります。普段から、万が一の場合に備えて対応策を考えておくことが大切です。

第6章では、休日及び終夜での実験、特に無人で行う実験について書かれてあります。

第7章から第10章では、X線、レーザー光線、高圧ガス容器の取扱い、液体窒素などの 取扱い、粉塵・振動に関する注意事項が書かれています。それぞれ使用する装置に記載さ れている注意事項とあわせて事故を未然に防ぐ手立てをとることが肝心です。

第11章から第15章では、情報機器作業、機械系、電気系、化学系、生物化学系の実験の際、 事故防止、災害防止の上で知っておくべきことが書かれています。経験が無い、あるいは 乏しい場合には実験や作業を行う前に読み、事故防止に役立ててください。

第16章では実験で生じた排水・廃液の処理について書いてあります。法令に従った処理 が必要です。

第17章では、各種金属の取扱注意一覧表が掲載されています。実験等で金属を扱う場合

は、安全対策や法令の遵守を常に心がけてください。

第18章では、万が一発生した事故について安全衛生管理者へ報告するための様式が掲載されています。今後の安全衛生管理に役立てるためにも報告をお願いします。

第19章では、安全衛生学生委員の設置・組織・活動内容について記載しています。安全 衛生活動は、大学教職員だけでなく、労働安全衛生法が適用されない学生についても安全 衛生の確保を目指す必要性に基づき設置したものです。

第20章では、愛媛大学における安全衛生管理に関する規程等が掲載されています。事故 のない実験実習等の環境を維持していくための規律です。

多くの事故はちょっとした不注意で発生します。「安全」と「健康」を意識し、行動するように心がけてください。

工学部安全衛生委員会

1. 健康管理

1. 健康管理1)

1.1 健康管理

1.1.1 健康は自分で守る

皆さんは大学で専門科目を勉強し、社会に役立つ人間として卒業していきます。社会では、専門の知識ばかりでなく、自己管理の能力が要求されます。その自己管理能力の一つが健康管理能力です。健康は、皆さん一人一人の「生涯設計を実現するための大切な資源」となるのです。心身ともに健康が維持できる能力は、自らの力を十分に発揮し、社会で活躍するためにとても大切です。

1.1.2 健康に生活するための体力

大学生になると高校生までとは異なり、人によって定期的な運動の機会が少なくなります。運動不足は筋力や体力、免疫力の低下をまねきます。また、体がよく動くことで、気力や意欲、精神的ストレスに対する強さや思いやりの心などの精神的な面に好影響を与えます。学生の皆さんには、生活習慣病につながる要因(高血圧や血中総コレステロール値、肥満傾向など)にも気をつけて、健康な状態で生活できる基本的な体力を高めることが必要です。

1.2 健康診断

健康診断は健康管理の基礎となるもので、1年に1回実施しています。全員必ず受診してください。健康を維持するためには、現在の自分の状態を定期的に客観的に把握しておく必要があります。自覚症状のない病気や不摂生な生活習慣による生活習慣病などをチェックする機会になります。健康診断の結果、異常などがあれば、再検査・精密検査・学校医の診察などを行い、必要に応じて他の医療機関への紹介などを行います。再検査などを指示された場合は、忘れずに受診してください。健康診断は自分自身の健康チェックのために受けるものですが、受診していない方(再検査なども含む)には、健康診断証明書の発行ができませんので注意してください。

1.3 総合健康センターでの健康相談

1.3.1 総合健康センターでの健康相談・診察・応急処置

- (1) 総合健康センターの医師及び学校医による健康相談を実施しています。
 - <診療科>
 - 内科
 - 精神科
 - 耳鼻咽喉科
 - ・歯科口腔外科(歯科治療はできません)
 - 皮膚科
 - 婦人科

- (2) 詳しい日程などは、毎月発行している**総合健康センターニュース**をご覧ください。 総合健康センターニュースは総合健康センターウェブページ(下記QRコード)より確認 できます。
- (3) 急な体調の変化、ケガなどに対しては、医師の診察・処置・投薬を行っています。
- (4) 血液・尿・心電図などの臨床検査も行います。
- (5) 休養室のベッドでしばらく休むこともできます。
- (6) 自動身長体重計・全自動血圧計・体組成計・超音波骨評価装置・視力計・握力計などの機器や、 雑誌なども利用できます。

1.3.2 急病・重症の場合

- (1) 総合健康センターは病院とは違い設備などが十分でないため、健康相談・応急処置以上 の診療はできないことがあります。重症の場合や、総合健康センターが休診や業務時間 外の場合などは、直接、病院へ行くことも必要です。また、状況によっては救急車をす ぐに呼ぶ必要がある場合もあります。
- (2) 総合健康センター TEL089-927-9193 (内線 9193) に連絡をする場合は、できるだけ状況を把握している方が連絡し、医師又は看護師に相談してください。
- (3)総合健康センターが閉室している時に、救急車を要請した方がいいか、今すぐ病院を受診した方がいいかなど判断に迷う場合は、救急安心センター事業「#7119」に電話をかけて専門家に相談します。(365日24時間対応)

1.3.3 こころの相談

- (1) 心身の不調、人間関係、自分自身の性格など、学生の皆さんの様々な悩みの相談に応じます。他のどこに相談したらよいか分からないときなどもアドバイスします。場合によっては、定期的なカウンセリングや心理検査、他の相談機関などへの紹介も行います。
- (2) 相談者を尊重し、あくまで中立的な立場で問題解決のためのお手伝いをします。相談に来られたこと、相談内容などは個人のプライバシーとして厳守し、家族、教員その他の大学関係者なども含めて、総合健康センターの外に勝手に漏らすことはありませんので、安心して気軽にご相談ください。
- (3) こころの相談は原則予約制です。総合健康センターのホームページまたは電話から予約してください。

1.4 交通安全

交通事故の負傷者および死者数は2000年頃までは増加傾向にあり、ピークである2004年には年間およそ118万人にも上りました。しかし2005年から年々減少し、2022年には、年間およそ36万人まで下がっていましたが、2023年には増加に転じ、死者数が8年ぶりに前年より増えました²⁾。 交通事故の発生件数も増加している今、あなたが事故に遭うかどうかは、あなたの行動に大き く依存します。特に深夜や早朝など視界の悪いときは、十分な注意が必要です。

1.4.1 車両に関して特に注意すること3)

(1) 友人などに自己車両を貸さないこと

免許の有無に関わらず友人に車輌(自動車・原付など)を貸して、その友人が事故を 起こすケースや飲酒運転で検挙されるなど、しらずしらずのうちに重大な違反行為に手 を貸してしまう場合があります。

友人に車輌を貸し、貸した友人が事故などを起こした場合、刑事・民事ともに貸した 方もその責任を問われる場合もあります。

『君は、一生を懸けて他人が起こした罪を償う覚悟がありますか?』

(2) シートベルトを着用すること

シートベルトは、交通事故から自分自身を守る最後の砦です。『近くだからいいや』とか『スピードを出さないからいいや』などと油断していると、思わぬ事故に巻き込まれ『命』を落とすこともあります。『シートベルト着用』は法令で決まっている運転者の義務です。普段から着用を実践することです。

「学生の交通事故死は、他の年齢層と比較して同乗者の死亡が多い。」

※同乗者(後部座席も)の命も預かっていることを自覚し、同乗者にもシートベルトの着用 を!!

1.4.2 自転車による交通事故

自転車に関連する死亡・重傷事故の件数も減少傾向にあり、2008年には1 万 3 千人を超えていた物が2018年には9 千人を割るまでになっています。これらの事故の相手としては対自動車が8 割近くを占め、また事故のタイミングは出会い頭の衝突が6 割近くとなっています 7)。交差点に安全確認も減速もせずに進入する学生および教職員を時折見かけますが、危険な運転であることを認識し改善してください。2023年4月から全ての自転車利用者のヘルメット着用が努力義務化されました。万一事故に遭った際、ヘルメットを着用していないと致死率が着用者の約2.5 倍になるというデータもあるため 4 、着用を心がけてください。なお、自身が加害者になることも十分にあり、事故の状況によっては非常に高額な損害賠償を求められることもあります。愛媛県では2020年4月から自転車損害賠償保険等への加入が義務化されています 5 ので必ず加入しましょう。

1.5 参考文献

- 1) 愛媛大学総合健康センターウェブページ
- 2) 令和5年中の交通事故死者数について. 警察庁交通局交通企画課. https://www.e-stat.go.jp/stat-search/file-download?statInfId=000040133400&fileKind=2
- 3) 道都大学ホームページ

- 4) 自転車関連事故にかかる分析. 警察庁交通局. https://www.npa.go.jp/bureau/traffic/bunseki/sonota/310425jitensha.pdf
- 5) 「愛媛県自転車の安全な利用の促進に関する条例」チラシ. 愛媛県県民環境部防災局消防防災安全課.

https://www.pref.ehime.jp/h15300/jitensha/documents/ryoumen.pdf

2. 安全に実験・実習をするために

2. 安全に実験・実習をするために

リスクアセスメントとは、事前に危険性、有害性の評価を行うことにより、除去、低減するための手法です。愛媛大学ではリスクアセスメントについて「実験室等における実験及び実習等のリスクアセスメントに関するガイドライン」が制定されています。安全に実験・実習をするためには、実験を行う人が、実験・実習ごとにガイドラインに基づいてリスクアセスメントを実施することが必要です。また、実験の責任者はその結果を実験室等の危険性を把握し、研究室等の全構成員に周知した上で行うことが重要です。リスクアセスメントについての資料、様式は以下を参考ください。

- ・本ハンドブック「安全衛生規程関係」
 - (1) 実験室等における実験及び実習等のリスクアセスメントに関するガイドライン
 - (2) 実験等に関するリスクアセスメントシートの記入要領
- ・愛媛大学工学部安全衛生委員会Web「申請書・報告書等 様式」

https://www.eng.ehime-u.ac.jp/shc/format/index.html

- (3) 実験室等の危険物保管状況(様式1)
- (4) 実験室等の火災の危険性把握に関するシート(様式2)
- (5) 実験等に関するリスクアセスメントシート (様式3)」

2.1 整理·整頓·清掃·清潔

安全の基本は、部屋・廊下の整理・整頓・清掃・清潔といわれており、研究室、試験室などに起こった災害を調べてみると、整理・整頓の悪いことが原因となっている場合が多くみられます。また、整理・整頓に使う高い棚、キャビネット・書架類、ガラス張りの棚などは、極力壁際に設置して必ず転倒防止金具などにより固定するようにします。また、廊下は非常の際の重要な避難場所であり且つ避難経路です。愛媛大学では廊下に物品をおくことは厳重に禁止されています。

- (1) 試験器具、事務用品などは、置き場所を定めてすぐに使えるように常に整理・整頓します。
- (2) 棚や机に書類や物品を山積みにしたり、はみだしたりしないようにします。
- (3) 通路、出入口、非常口、階段など、また消火器、消火栓、電源端子付近には、物を置いてはいけません。
- (4) 作業終了後、必ず清掃を行います。
- (5) 作業を行う実験室、研究室での飲食は禁止されています。
- (6) 廊下部分は非常の際の避難場所であり且つ避難経路であるので、物品をおいてはいけません。

2.2 実験・実習を行う前に

万が一の場合に備え、実験・実習室からの避難路(<u>火災や地震の際には、エレベーターを使ってはいけません</u>)を確認しておくことが必要です。また、作業内容に応じた服装をすることが大

切です。さらに消火器、洗眼器、担架のある場所も確認しておきます。

- (1) 各実験室にはその部屋で注意すべき事柄が表示されていますので、よく読んでおくことです。
- (2) 実験室、実習工場で作業を行う場合、作業がしやすく災害から身を守るのに適した服装をし、必要な場合、安全メガネ、安全靴、手袋、ヘルメットなどを着用します。
- (3) 履物は、動きやすく滑らない靴を履きます。履物のかかとの金具や鋲は滑りやすく、また紐のほどけた靴、靴のかかとの踏み履きはつまずく危険があります。

2.3 作業にあたって

- (1) 実験、実習にあった姿勢で作業をし、無理な体勢で作業を行ってはいけません。
- (2) イスに座った作業では、床に平らに足が着くよう調整したイスに深く腰を掛け、机に真っ直ぐ向かい、自然な姿勢で仕事をするように心掛けましょう。
- (3) 使用機器の取扱いには以下の点に注意しましょう。
 - イ)実験機器について、まず取扱い説明書などにより十分な知識を得ておく必要があります。
 - ロ) 使用方法について、教職員から十分指導を受け、正しい使い方を理解してから操作するようにします。
 - ハ) 実験機器は丁寧に取り扱わなければいけません。
 - 二)実験機器の調子の悪い時(普段より使用機器の音、においなどに注意しておくこと)は、 使用を中止し、速やかに教職員に連絡します。
 - ホ)やむを得ず実験室、工場などで休日や夜間に作業を行わなければならない場合は、所 定の手続きをとり必ず2人以上で行うようにします。
- (4) 長時間同じ姿勢を続けると、特定の筋群が緊張収縮を続けることによる「静的疲労」が 起こることとなります。この静的疲労を解消するには、ラジオ体操などにより、筋肉の 収縮と弛緩を交互に行う運動をします。

2.4 電気器具の取扱い

実験・実習では電気器具を頻繁に使います。電気器具を使う上で電気に関する基本的な知識を 正しく理解しておくことが必要です。

電気系の安全・衛生も読んで理解を深めてください。

- (1) 電流を考え、たこ足配線をしてはいけません。
- (2) コードは研究室のような過酷な条件下で使用すると、老朽化しやすくなります。被覆が硬くなるとひび割れし、銅線がむき出しなり、事故の原因となります。
- (3) やむを得ずコードを床に這わす場合には、必ず伏せ板やコード保護用チューブを用い、 足を引っ掛けないようにします。
- (4) 実験室内では水を使うことも多いので、漏水対策をとり、感電などが起きないようにしておきます。

(5) 高温に加熱される部位にあるコード類は不燃性断熱材を用いてコードが加熱されないよう工夫します。

2.4.1 感電·漏電·過熱

主な電気災害には感電、漏電、過熱があります。

< 感 電 >

感電の際に問題となるのは、触れた電圧よりも人体を流れる電流の大きさです。人体に対する電流の影響は、通電部位や通電時間によって大きな違いがありますが、(mA)×(sec)の値が30を越えれば人体が致命的損傷を受けるとも言われています。状況によっては家庭用の交流100Vでも死亡に至る危険があります。

感電事故を起こさないためには、一般に以下の注意を守ることです。

- (1) 濡れた手で電気器具に触れてはいけません。
- (2) アース(接地)を正しく接続します。
- (3) 高電圧は、触れなくても放電によって感電する危険があります。高電圧を通ずる配線は 容易に手で触れない構造にしておくことが必要です。

<漏電>

漏電は、電気機器が古くなって絶縁が不良になったり、機器内部に湿気がついたり、高圧部分にほこりが溜まったりすることで起こることが多いのです。漏電は火災に直結するので非常に大きな災害の原因となります。

- (1) 特に電源部分には、ゴミやほこりが溜まらないように適宜点検します。
- (2) ACプラグのネジのゆるみ、コードの折れ曲がり部分の損傷などでショートが発生することが多いです。

< 過熱 >

過熱には、電気器具自体の過熱と配線やコンセントの過熱があります。

- (1) 過熱によって事故を起こし易い機器としてはまず第一に、電熱器(電気コンロ)があります。 特に発熱体がむき出しのコンロは大変危険です。その様な機器の使用に際しては必ず誰 かがそばについていること、短時間の使用にとどめることなどの注意が必要です。
- (2) オイルバスを無人で長時間使用する場合には、実験前に液槽内の熱媒体の量は十分であるか、目視及び攪拌によって状態に問題はないかを確認することが必要です。また運転中に随時、熱媒体の量及び状態を確認することも大切です。
- (3) 1000℃以上にもなるような電気炉を無人で長時間使用する場合には、炉の周囲に燃えやすいものを置かないなど、十分な対策をとっておくことが必要です。
- (4) 電気ストーブも過熱による危険が大きいです。特に大型のものでは、機器自体だけでなく、 コンセントやコードも過熱し易いので注意を要します。
- (5) 配線や、コンセント (テーブルタップは定格15Aのものが多い) の過熱は定格以上の電

流を流したときに起きます。

2.4.2 実験室での電気の使用に関する基礎知識

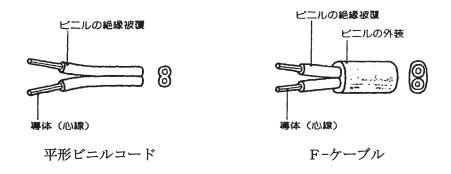
実験室で種々の電気器具や配線を扱う上で必要となる実際的な事柄について、各自必要な知識 を習得する様に努めなければいけません。

(1) 接地 (アース)

電気機器を接地することは、感電防止の意味からも、漏電による火災防止の意味からも大切です。配電盤に備え付けの接地を利用します。

(2) ヒューズ及びブレーカー

大きすぎるヒューズはヒューズの意味がなく、逆にヒューズが小さすぎると切れてばかりいて不都合ですから、使用電流に見合った適正なヒューズを使うことが必要です。 ヒューズ、ブレーカーが度々切れるときは器具の取扱いに問題がありますので、器具を調べる必要があります。


(3) 電線及びコード

電線には、数多くの種類がありますが、ここでは実験室で室内配線などの目的で日常 使われる電線について簡単に述べます。

平形(平行)ビニルコード

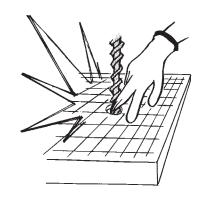
家庭用電気器具や、測定器などに付属して使用されるコードで、定格電流は普通 7 A (心線0.75 mm²)です。このコードにテーブルタップを取り付けて、いわゆるタコ足配線をしているのをよく見かけますが電流容量の点で危険です。またこのコードは移動電線であり、壁や床などに固定してはいけないことになっています。

室内の電気配線を固定する場合には、通常の平形ビニルコードを用いてはいけません。 15A以上のFケーブルを用います。


2.4.3 電気機器の無人運転について

電気機器は、長時間にわたって、通電したままにしておく必要がある場合があります。無人運転においては、過熱、漏電によって大事に至る危険が大きい事は言うまでもありません。使用される機器は多岐にわたりますので、その場合の注意をいちいち列挙する事は不可能です。しかし、要点は比較的簡単であって、機器が故障した場合に暴走する事なく、安全な状態に停止する様な工夫がなされていることが重要です。装置の故障だけでなく停電時及び、停電復旧後の責任者への連絡方法などを明記したカードを、無人運転中の機器の側に備えておくなどの配慮も必要です。

2.5 機械類の安全運転について

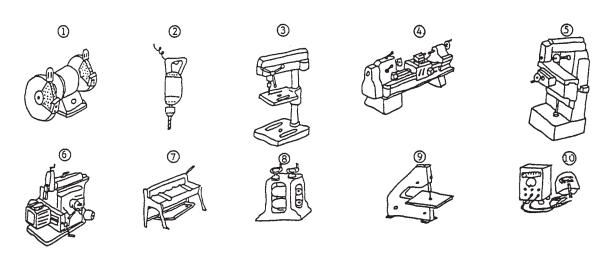

機械類を取り扱う際の一般的な注意事項を示します。

(1) 必ず作業服を着用し、ボタンなどは必ずかけて、作業中巻き込まれないようにしましょう。 また加工機械に応じた保護具(保護メガネ、防塵マスクなど)を着けましょう。

ボタンをかけてないと・・・

- (2) 履物は、革靴あるいは運動靴を、出来れば安全靴を使用してください。スリッパ、サンダルなどは厳禁です。
- (3) 工作機械を使用するときは、軍手を着用してはいけません。軍手は重量物を運搬するときだけ着用します。

軍手をして作業をすると巻き込まれて危険!


- (4) 1台の工作機械は一度に1人だけで操作するのが原則です。グループで行うときは、必ず互いに合図で確認してください。作業者が加工物を交換しているとき、他のものが操作盤のボタンを押して機械を作動させたりすると、重大な人身事故が発生する危険があります。
- (5) 切りくずは早めに安全に処理します。この処理をするときは、必ず機械を停止させてから、 ブラシなどを用いて行います。切りくずは、鋭利でしかも高温になっているので素手で 取り扱うのは大変危険です。
- (6) 運転中、万一危険、異常が生じたときは、直ちに操作盤の非常停止ボタンを押して緊急停止させます。

機械類の取扱いによって起こる災害の原因は人がつくるものです。すなわち、不注意や整理整頓の不備などによる場合がほとんどです。機械類の使用にあたっては、熟練している人の指導を受け、取扱いは注意事項を守り、他のことに気をとられないよう注意することを忘れてはいけません。

2.5.1 機械の種類と名称

通常研究で使用される工作機械などには図に示した次のようなものがあります。

- ①グラインダー ②ハンドドリル ③ボール盤 ④旋盤 ⑤フライス盤 (ミーリング盤)
- ⑥形削盤(シェーパー) ⑦切断機(シャーカッター) ⑧圧延機(ローラー)
- ⑨糸帯鋸(バンドソー) ⑩溶接機

2.5.2 起こしやすい事故と取扱いに関する注意

- (1) 回転を利用した機械
 - ①~⑤が相当し、高速回転しているので回転部に巻き込まれたり、削り屑で負傷したりしないように注意します。
- (2) 往復運動を利用した機械
 - ⑥⑨が相当し、加工物の確実な固定と刃の送り、方向に気をつけます。
- (3) 強い力で働く機械
 - ⑦⑧が相当し、切断材料の固定に気をつけます。不注意による指先切断やローラーに巻 き込まれないように注意します。
- (4) その他
 - ⑩の使用に際し、保護具をつけるとともに耐熱布を用いて火花飛散による火傷を防ぎます。

2.6 化学実験の一般的注意と化学物質の取扱い

ここでは化学系実験の一般的注意と化学物質の取扱いについて簡単に示します。実際に実験を 行うにあたっては、「第14章の化学系の安全・衛生」も読んで理解を深めてください。化学実験 にはいろいろな種類があり、それぞれいろいろな操作の組み合わせよりなっています。実験のそ れぞれの操作には必ず意味があり、それを理解して行うことが安全上からも重要です。「なんとなく」、「この程度は良いだろう」、「とりあえず」など根拠のない考えで実験してはいけません。 化学実験の安全対策も場合により異なりますが、一般に次の諸点に気を配る必要があります。

2.6.1 化学実験の一般的注意事項

- (1) 実験室の環境を知っておくこと。 非常口の位置、消火器、救急シャワーの場所などをよく確認しておきます。
- (2) 身支度を入念にすること。

身支度が不十分だと・・・

実験室では白衣を着用し、ボタンを掛け、すそが広がらないようにします。着衣することで薬品などによる衣服の汚損を防ぐのみならず、肌に密着していないので、薬品を 多量に浴びた場合も、直ちに脱ぎ捨てることで難を逃れることができるからです。

- (3) 履物は足の保護がよくでき、実験中及び不慮の事故の際、機敏な動作ができるものを選びます。
- (4) 化学実験では劇物の飛沫や、爆発の際のガラス片が目にはいる危険があります。従って 実験室では常に安全メガネをする必要があります。劇物や毒薬を扱うときは、必要に応 じて防護手袋、マスク等を着用するようにします。
- (5) 使用する薬品、器具・装置の確認

試薬瓶に記載されている薬品名、構造が、使用する薬品と合っているか確認します。実験 の過程で有害な気体や悪臭のある気体が発生する場合にはドラフト内に装置を組み立てます。

装置の組み立てにあたっては、計器類の測定可能範囲と精度、反応などに使うガラス容器の種類と容量、力のかかる場合の強度、かきまぜの能力など使用する器具が適当であるかチェックします。装置全体としての安定性をよくし、全体の配置をよく考え、実験動作に無駄や危険が生じないように組み立てます。装置は実験にはいる前に正常に作動するかどうかチェックします。実験中は実験経過をよく観察し、長時間にわたって放置してはいけません。

- (6) 実験台の整理・整頓に心がけ、実験室の床にコードをたらしたり、障害物を通路に置くようなことはしてはいけません。
- (7) 常に換気をするようにします。また化学実験においては、局所排気装置であるドラフトチャンバーを使用することが多いです。使用前に「14.4 ドラフトチャンバー」を読んでくだ

さい。

- (8) 薬品などをこぼしたら薬品の性質に応じたやり方で処理します。温度計などを割って有 毒な水銀をこぼした場合は、セロハンテープやビニールテープでそっと拾い集めて、水 銀廃液入れ用の容器に入れます。この時、決してほうきなどで掃いてはいけません。も しそうすると水銀は微少な液滴となって四散し、危険な状況となります。
- (9) 1人で実験しないこと。

実験室には必ず2人以上いる状態で実験し、1人で行ってはいけません。また、担当 指導教員の許可なく部外者を実験室に入室させてはいけません。

(10) 事故が起きたときの対策を考えておくこと。

万一事故が起きたときはどうしたらよいか知っておくことは、事故の被害を最小限に食い 止める上で極めて重要です。特に危険性のある物質や機器についてはどんな場合にどんな危 険性があるかを知っておき、事故の際の応急処置を知っておくことが、身を守る上で重要です。

(11) ガス・水道・電気

後始末を忘れないことです。冷却水を流したままにしておいて夜間に水圧が上がった ために、管がはずれて漏水事故を起こした例は多いです。またガスの元栓や電源を切る 際には、他人が使用中でないかどうか確認しなければいけません。他人の使用を気付か ずにガスの元栓を締めると、翌日元栓を開けた際にガスが漏れて非常に危険です。

2.6.2 化学薬品の取扱い

化学実験では、様々な化学薬品を取扱います。実験を行うにあたって、その薬品の性質を知り、 実験器具を正しく使い、操作を誤らず、適切に取り扱えば、化学実験の作業はその他の多くの作 業と比べて特別に危険なものではありません。適切な服装、安全メガネを着用し、爆発性の高い 実験では防護壁などを利用し、ドラフト内で実験を行うことなどで重大事故を未然に防ぐことと なり、事前準備は実験そのものよりも重要なことです。

- (1) 実験室で取り扱う薬品や溶媒などは、発火性、引火性、爆発性、腐食性、有毒性など、何らかの危険性を有する物質です。従って、薬品を取り扱う者は、使用から廃棄までのすべての責任を持たなければいけません。
- (2) 実験室における事故の90%以上は、危険性に関する知識の欠如と実験操作上の不注意に 起因しています。
- (3) 自己過信は危険です。事故はやや慣れてきたころに起き易いものです。

実験に用いる薬品や溶媒などの危険有害性や取扱い注意事項は各実験室に常備されているSDS (Safety Data Sheet) によって知ることができます。使用する溶媒や薬品の性質を予め調べ、理解した上で取り扱うことは自らの身を守ることとなります。引火性物質、過酸化物、過酸化物を生成しやすい溶媒、水により爆発的反応を引き起こす物質、混合すると危険な組み合わせ、腐食性、毒性、悪臭のある物質などの取扱いには特に注意が必要です。なお、化学系の安全・衛生にも一部薬品の性質が記載されています。

(1) 薬品はどんなものでも直接手で触れたり、臭いをかいだり、口に入れたりしてはいけま

せん。気体の臭いをかぐときには手であおぐようにします。

- (2) 薬品を採取するときには、その性質に応じた取扱いが必要です。たとえば、潮解性・腐食性の水酸化ナトリウムを金属性薬さじで薬包紙の上に採取することは不正確であり、 危険です。
- (3) 薬品を混合したり、反応させたりする場合には、少量ずつゆっくりと様子を見ながら行います。多量の薬品の急速な混合は発熱や爆発をともなうことがあり、危険です。
- (4) 多量の溶媒を使用するときには換気を十分に行い、吸い込まないように気をつけます。エーテル、石油エーテル、トルエン、メタノール、エタノール、アセトンなどの揮発性溶媒を使用するときには、周囲に火がないことを確かめることが必要です。
- (5) 薬品や溶媒が皮膚に付いたときには、水溶性のものは大量の水で洗い流します。水に不溶性のものは石鹸で良く洗います。
- (6) 毒物や劇物の保管庫は必ず施錠します。
- (7) 廃棄物やガラス屑、紙屑は指示された場所に始末します。

実験廃液や洗浄液は、みだりに混合したり、流しに捨てたりしてはいけません。指示された容器に 分別貯留します。分類を誤ると化学反応が起こって危険な場合があります。またガラス屑や紙屑はそれぞれ別々に専用の容器に捨てます。「第16章 排水・廃液の取扱いについて」を参考にしてください。

2.6.3 ガラス器具の取扱い

化学実験室内で起こる最も多い事故は、ガラス器具を扱うときです。ガラスは機械的、熱的ショックに弱く、指先の力でも破損する場合があります。破断したガラスは非常に鋭利であるため、非常に深い裂傷を負うことがあります。ガラス器具を取り扱う際は無理な力を加えないよう注意します。ガラス器具には小さなキズ、ひび割れが入っている場合があります。使用前に必ず点検し、このようなガラス器具を使わないように注意する必要があります。

反応に使用するガラス容器の体積に対し、使用する薬品量が多くならないよう注意することが 必要です。

2.6.4 化学薬品の管理について

愛媛大学では教育や研究活動に必要なさまざまな化学薬品を保有しています。それらは火災や 健康障害などの人的被害を引き起こす危険性をもっており、正しく使用する必要があります。

化学薬品の取扱いに関わる法律は「毒物及び劇物取締法」、「消防法」、「労働安全衛生法」、「化 学物質排出把握管理促進法」などで厳しく規制されています。本学ではこれらの法規制に従い、 法人化以前の化学薬品の管理方法を刷新して「愛媛大学化学物質管理システム」として整備を進 めています。

「愛媛大学化学物質管理システム」の主目的は保有している化学薬品の使用状況を"正しく記録する"ことにあります。本システムの運用にあたっては、

(1) 法定「毒物」及び PRTR (化学物質排出移動量届出制度) 規制「対象化学物質」は、本システムに登録し厳正に入手量・使用量(場所)・保管量(場所)・廃棄量を記録しなけ

ればいけません。

- (2) 法定「劇物」及び労働安全衛生法規制「対象化学物質」は、本システムに登録し厳正に入手量・保管量(場所)・廃棄量を記録しなければいけません。
- (3)「医薬用外劇物」の表示のある物質は、施錠可能な場所に保管し(ガラスキャビネットは 不適)、一般試薬と混在させてはいけません。やむを得ず、冷蔵庫などに保管する場合は、 特定の区画をつくり、他と明確に区別します。
- (4) 消防法規制対象化学物質「危険物」は、本システムに登録し厳正に入手量・保管量(場所)を記録しなければいけません。
- (5) その他の化学物質は、本システムに登録し厳正に入手量・保管量(場所)を記録することが望ましいでしょう。

化学薬品を使用する場合は、愛媛大学の規定に従い適正に取り扱いましょう。

2.7 運搬作業について

人力による運搬作業においては、無理な動作や継続的な酷使により筋肉や靭帯が損傷する傷害を負うことがあります。これらの傷害は回復に長期間かかる事が多いため、生活への影響は大きいものとなります。また運搬物の落下などにより、骨折などの重傷を負うケースにもつながります。以下の内容を参考に事前にしっかりとした準備をして、安全に運搬作業を行いましょう。

- (1) 重量物(目安として作業者の体重の40%を超える重量)は、複数人で運搬する。
- (2) 複数人での作業には、リーダー又は監視者として指導担当者や熟練者をおき、作業中の安全確認を行う。
- (3) 重量、形状、重心の位置、危険有害性の有無等の作業内容についての確認を行う。
- (4) 運搬に使用する器具、工具の点検を行う。
- (5) 靴(できれば安全靴)、保護帽、保護手袋、長袖長裾等の適正な服装で作業を行う。

補足:

- ・特に複数人が組になって行う作業は、作業前に十分な準備と打ち合わせ行う。
- ・運搬経路を確認し、運搬方法と各自の受け持ちを打ち合わせる。
- ・運搬経路の不要な物は片付け、安全な運搬経路を確保する。
- ・複数人での運搬中は合図をするなど、呼吸を合わせて作業を行う。特に降ろす時は、手足 を挟まないよう注意する。

2.8 転倒災害の防止について

転倒災害の発生件数は非常に多く、労働災害の中でもトップクラスです。また、回復に1か月以上の長期間かかる事が多い災害です。転倒災害は、大きく分けると「滑り」、「つまずき」、「踏み外し」の3種類となります。日頃から以下の内容を参考にして、転倒災害を防止しましょう。

- (1) 4 S (整理、整頓、清掃、清潔) に取組む。
- (2) 滑りやすい場所では狭い歩幅でゆっくりと歩く、足元が見えない状態で作業しないなど、 転倒しにくい方法で行う。
- (3) 作業に適した靴(すべりにくく、ちょうど良いサイズなど)を着用する。
- (4) 段差や滑りやすい場所を見つけたら、安全衛生委員に報告する。

3. 防火と消火

愛媛大学災害対策マニュアルもご参考ください。

URL : https://www.ehime-u.ac.jp/campus_life/disaster-control/

3. 防火と消火

3.1 火災について

火災がひとたび発生すると、人身事故につながる危険性は極めて高く、建物や設備にもきわめて大きな損害をもたらすこととなります。火気を粗略に扱ったり、燃料や設備器具の取扱いを知らなかったり、また、知っていてもそのとおりにしなかったために、引き起こした火災の例は非常に多いのです。火災を発生させないためには、日頃から十分注意し、自分の作業場又は実験室から絶対に火災を発生させないようにしなければなりません。

3.2 火災を起こさないためには

右図は「火の三角形」と呼ばれるもので、火災の三要素です。従って、火災を起こさないためにも、消火する場合にも、この三つの要素の一つを取り除けばよいのです。例えば、ガスストーブの栓を閉じると可燃物であるガスの供給がなくなり火が消えます。また、燃えている油缶に金属性の蓋をすると酸素の供給が断たれて火が消えます。更に、燃えている物(油などを除く)に水を掛けるか又は濡れた布などを被せると、発火点以下に冷却されて火は消えます。

3.3 火災予防

火災予防のために次の心得を守らなければいけません。

- (1)「火気厳禁」の表示のある場所では、火気を絶対使用してはいけません。
- (2) 指定数量の5分の1を越える危険物を実験室に置いてはいけません。
- (3) 実験室内は、どこで事故が起こっても全員が廊下に退避できるように装置類の配置を考慮し、常に安全な出口を確保します。
- (4) スイッチ、ヒューズ及び電気コードは規格品を用います。タコ足にしたり、床にたれ下がる配線をしてはいけません。
- (5) 火気使用器具は、不燃性の台上で使用します。実験前に使用する器具を必ず点検し、破損した器具、キズのあるガラス器具などは使用してはいけません。
- (6) 熱源の近くに引火性、可燃性の物質は置いてはいけません。
- (7) 可燃性の溶剤は、必要な量のみを小出しにして使用します。
- (8) 未知の点が多く危険をともなうような実験は、休日や夜間を避け、1人だけでは実験を してはいけません。
- (9) 実験室の整理・清掃に日頃から心掛け、雑然としたところで実験してはいけません。
- (10) 退室時は室内を点検し、火気の始末、電源を落とし、窓の戸締まり、消灯などを確認した上で(電気、ガス、水道と指差し確認)退室します。また盗難防止のためにも施錠し、戸締まりします。

- (11) 火災発生、又は爆発などの恐れがある箇所を発見したときは、ただちに緊急連絡網に従って通報するとともに、初期消火などの臨機の措置を講じます。
- (12) 消火器・消火栓・配電盤などの設置場所は、必ず操作に必要な空間を保ち、障害となる物品を置いてはいけません。
- (13) 構内は全面禁煙です。
- (14) コンセント周りにごみやほこりが溜まると火災の原因になります。定期的に掃除するように心がけましょう。

3.4 火災が起こったとき

- (1) 火災の発生状況を確認し、「火事だ」と周囲の人達に知らせます。なお、火災発生によって感知器が働き、火災報知器のベルが鳴り、集中監視盤に発火地域が表示されることとなっています。
- (2) 消火器を用いて消火します。消火器の操作を誤らず、適当な消火剤を放出すれば、初期の火災は容易に消えます。この場合、決してあわてないで消火作業を行います。
- (3) 電話で総務チーム、守衛室に通報し、火災の場所と状況を知らせます。連絡先は裏表紙を参照して下さい。状況に応じ、現場の1人は火災報知器のボタンを押します(ベルが鳴り、消火栓ポンプが始動します)。
- (4) 電源、ガス源を切ります。周囲の燃えやすいものは、早く取り除きます。
- (5) 被服に着火したら、手又はありあわせの物でもみ消すか、近くの水をかぶります。更に、 廊下などに転げてもみ消すのもよいでしょう。また、消火シャワーが設置されている場 所及び使用方法を確認しておきましょう。
- (6) ドラフト内の火災では、上方への火災の拡大と消火の効果からいって、換気を止めるのがよいでしょう。ただし、煙、有毒ガスの発生をともなう場合など状況によっては換気を続けた方が良く、その判断は、爆発物質及び状況をよく確認の上で決めましょう。
- (7) 燃性ガスボンベの噴出により発火した場合、消火はしないで出来るだけ周囲の可燃物を除去するよう努めましょう。
- (8) 発火をともなわないで可燃性ガスが噴出した場合、なるべく離れた位置で電源を切るなど、 着火源を除き、次に窓を開けて換気をはかり、出来れば噴出口をふさぐように努めましょう。
- (9) 有毒ガスの発生をともなう恐れのある場合には、消火にあたって防毒具を付けるか、少なくとも風上側より消火に努めましょう。

3.5 消火器の種類と取扱い方

消火器は薬剤の種類によって、粉末消火器、強化液消火器、泡消火器などがあり、火災の種類 に適した消火器を選ぶ必要があります。消火器に貼ってあるラベルが適応する火災の種類を示し ています。

工学部に設置してある消火器の適応

		ABC消火器	二酸化炭素消火器
ラベ		粉末系	ガス系
ベルの色	火災の種類	リン酸アンモニウムを薬剤とする。 様々な種類の火災に対応可能。温度 を下げる効果は無いので再燃に注意。	二酸化炭素を薬剤 とする。汚損が無 いので特に電気設 備に対し有効。密 閉空間では使用で きない。
白	普通火災(A火災) 建材、紙、衣類、 樹脂など、主に 固形物の一般的 な火災	0	×
黄	油 火 災 (B火災) 灯油、動植物油、 有機溶媒、機械 油など、可燃性 液体による火災	0	0
青	電気火災(C火災) パソコン、電気 コード、配電盤 など、電気設備 に関連した火災	0	0

○:適応している、×:適応していない

3.5.1 消火器の使い方

上に引き抜きます。

火元に向けます。

①安全ピンに指をかけ、 ②ホースをはずして、 ③レバーを強く握って 噴射します。

3.5.2 消火器のかまえ方

- (1) 屋外で使用する場合、風上から消火します。
- (2) 屋内では、消火剤によって視界が悪くなるため、脱出経路を確認、確保してください。
- (3) 低い姿勢で熱や炎を避けるようにして、徐々に近づきます。
- (4) 炎や煙にまどわされずに火元にノズルを向け、火元を掃くように左右に振り、消火します。

3.5.3 日常の点検

- (1) 安全ピンが確実についていますか。
- (2) 容器やキャップに錆や変形などはありませんか。
- (3) ホースに詰まりやひび割れはありませんか。
- (4) 圧力ゲージの付いているものは、圧力値を示す針が正常値にありますか。

3.5.4 維持管理

- (1) 消火器は鉄製容器のため錆びます。直射日光の当たらない場所、湿気の少ない場所や雨水のかからない場所で目のつきやすい場所に設置してください。
- (2) 消火器は、毎年1回以上容器の錆びや変形などを点検するとともに、保管場所によって も異なりますが、概ね5年を目安に消火剤を交換してください。
- (3) 消火器の老朽化など、異常が発見されたものは、消火訓練を含めて使用しないようにしてください。

3.6 爆発が起こったとき

- (1) 付近にいる人が被害を受ける可能性が大きいので、負傷者の救護をまず心掛けます。
- (2) 爆発を起こした装置は、直ちに危険のない状態にし、それが困難で引き続き爆発の危険があるときは早めに避難します。
- (3) 爆風、飛散物による破損のため、付近で二次的な事故が起こる恐れがありますので、爆発した装置だけでなく、付近も点検します。
- (4) 爆発によって火災報知器が作動したとき又は爆発によって火災が発生したときは、「火災 が起こったときの処置」に準じて行動します。

3.7 避難

- (1) 火災又はガスの発生が初期消火では手に負えないと判断された時は、速やかに安全な場所へ避難します。
- (2) 消火器で消火できる火災の限界は、その時の状況によりますが、壁の内装材が燃えている程度までであって、天井が燃えはじめると消火は難しいので速やかに避難します。
- (3) 部屋を退出する場合は、ガス源、電源、危険物などの処理を行った後、内部に人のいないことを確認して、出口の扉を閉めます。

- (4) 廊下における避難路の選択は、アナウンスなどの情報がない場合、煙の動きを見て風上に逃げます。室内での煙の速度は縦方向は $3\sim4\,\mathrm{m/sec}$ 、横方向は $0.5\sim0.8\,\mathrm{m/sec}$ で勢知しておく必要があります。
- (5) エレベーターは、停電がなくとも、停止することがあるので使用してはいけません。
- (6) 階段は、煙の通路になり危険が多いです。平常から避難経路を考え、建物の構造、非常口などをよく知っておく必要があります。
- (7) 煙が多い場合は、手拭いなどを口にあて、低い姿勢で避難します。煙が床まで下がるにはかなりの時間がかかります。
- (8) 非常階段、非常梯子その他が使用できない緊急の場合は、窓を開け、大声で助けを呼ぶことです。
- (9) 廊下の防火扉は、必ず内側に人がいないことを確かめてから閉めます。強く押すか、強く引くかによって開けることもできるようになっています。

3.8 休日及び夜間の通報連絡

火災が発生したときは、落ち着いて電話で119番に通報し、火災の発生場所(建物名と部屋番号) を的確に言います。あわせて、裏表紙に記載の連絡先にも必ず連絡して下さい。

4. 地 震 対 策

愛媛大学災害対策マニュアルもご参考ください。

URL : https://www.ehime-u.ac.jp/campus_life/disaster-control/

4. 地震対策

平成23年3月11日東北地方で巨大地震が起き、甚大な被害と多数の犠牲者を出しました。我々はこの震災から多くの事を学び、それらを"教訓"として今後に活かすことが大変重要です。愛媛大学でも南海地震という大地震が来ることが予想されていますので、十分な地震対策を心がける必要があるでしょう。

4.1 地震にそなえて

大地震が発生した際、多くの人は慌ててしまい、日頃の冷静な判断ができなくなってしまいま す。地震に対処するには日頃から大地震に備えた万全な対策しておくことが重要です。

●避難場所を決め、そこまでの逃げ道を確保しておく。

研究室や実験室にいるときに大きな揺れを感じたら、安全な場所へ避難しなければなりません。 "机の下などに隠れるように"という教えがありますが、大きな揺れの場合、試薬棚や本棚が 倒れ、キャビネットは転げまわるという危険な状況が想定されます。その場合、研究室の扉外 にある「廊下」が至近の避難場所として有効です。このため"廊下に物品を置かない"ことが 安全に避難する第一歩です。

- ●避難場所、逃げ道はもちろん研究室内の整理整頓を日ごろから心がける。 日頃から研究室内を含めて普段から整理整頓を心がけ、揺れが収まるまでの避難場所と指定の 避難場所までの逃げ道を確保して下さい。
- ●避難訓練を定期的に行う。(*参考:災害時の連絡方法をチェック!) 愛媛大学工学部では年一回(12月初旬)、定期的に避難訓練を実施しています。"どの避難経路 を通って、どこに集合するか"、を実際に経験しておくと、いざという時にあわてなくて済み ますので、是非、避難訓練にも参加して下さい。
- ●火事を防ぐために、試薬には落下防止対策や試薬棚の固定など複数の対策を行う。
- ●棚は確実に固定、コンクリートにアンカーボルトで留めるのがよい。
- ●本でも試薬でも、棚の中身は棚の重心が下になるように配置する。
- ●建物の揺れ方向を考えて棚を配置する。
- ●棚だけでなく実験台、ドラフトなどの大型のものも壁と床に固定する。
- ●高圧ガス容器は1本ずつ固定し、チェーンは緩みのないように上下2カ所にかけ、固定金具はステンレス製のものを使う方が効果的である。
- ●機器につなぐ高圧ガス容器のチューブには遊びをもたせる。
- ●固定する支持台やチェーン、固定金具のメンテナンスを定期的に行う。
- ●合成実験はスタンドを使わずフレームに組む。
- ●実験台の上にガラス器具や試薬を出しっぱなしにしない。
- ●可動式実験台は装置を守るが、人がいると危ない。
- ●小型の実験装置や実験器具の下に耐震ジェルマットを置く。
- ●データの保管場所は考慮する。
- ●本震後の余震を想定し、試薬や機器の落下防止策やボンベの固定を見直す。

●対策を維持すること、維持する工夫が大事である。

4.2 地震が発生したらどうするか

- ●最優先するのは自分自身の安全である。
- ●廊下は身近な緊急避難場所である。

スチール家具、本棚などは倒れることがあるので身をよせてはいけません。あわてて外へ飛び 出すと、窓ガラスの破片などが落ちてきたり、ブロック塀などが倒れてきたりする場合があり ます。

- ●グラッときたらまず火の始末をする。 地震の揺れが強い時は、「火を消せ」と声を掛け合い、できる限り装置類の運転を停止又は停止の準備を手早く行う。火を出したり、危険なガスが流出したりすることのないように処置する。
- ●火が出たらすばやく消火をする。 地震発生と同時に学内外とも火災が多発し、消火力が集中できなくなる。出来るだけ初期消火 に努めることが大事です。
- ●化学実験室では、避難の際、余裕があれば部屋の窓や扉を閉める。

*参考

災害時の連絡方法をチェック!

災害用伝言ダイヤル「171(イナイ)」

被災地の住民が自宅の電話番号宛に伝言を音声で録音すれば、全国からその音声を再生(確認)できる。また、インターネットで利用できる、災害用ブロードバンド伝言版「web171」もある。

* 災害時以外でも毎月1日、15日、防災週間 (8/30 ~9/5) 等に『災害用伝言ダイヤル』の利用体験ができる。その他、携帯電話やPHSの各社も伝言板を設置しているので、その利用方法を事前に確認しよう。

使用方法

1. ①⑦①をダイヤルする。

 \downarrow

- 2. 災害用伝言ダイヤルに接続後、 音声ガイドに従い、連絡先(例 えば、研究室の電話番号や工学 部の電話番号など)を入力する。
- 3. 安否情報や被害状況を伝言する。
- 4. 電話を切り、待機する。

参考文献:現代化学2011年9月号「研究室を地震から守るには-東日本大震災の教訓」

研究室の地震対策チェックリスト

以下の項目は大地震による研究室(実験室)の被害を最小限にするための備えです。ひとつで も多くの項目にチェックできるように心がけて下さい。

震災時は速やかに行動できるか?!

	研究室メンバー全員が避難ルートと集合場所を知っている。
	消火器・消火栓の置き場所と使い方を知っている。
	実験室で揺れを感じたら、まず行うべき事柄を決めてある。(電気、ガスを止める。ボン
	べを閉める。廃液タンクのフタを閉める。避難時に火事を想定して窓を閉めるなど)
	消防署への連絡方法を考えてある。(最寄りの消防署の導絡先と場所、研究室の入ってい
! ! !	る建物の位置や階数など出火場所になった際のわかりやすい説明の仕方、化学消防車の
! ! !	要請など)
	ヘルメットや懐中電灯を必要数だけ常備している。
	研究室メンバーの緊急時の連絡先を把握している。(当人だけでなく実家の連絡先も)
	緊急地震速報を利用している。
	整理整頓の習慣はついているか?!
	避難場所(廊下など)を決め、物を置かないようにしている。
	逃げ道を断つことがないよう、通路際の物の配置を工夫している。
	棚の上が不要物の置き場にならないよう心がけている。
	読まなくなった本や雑誌など、不要な可燃物を置かないようにしている。
i	実験時、気をつける事柄を周知してあるか?!
-	やむを得ず実験台の上に、試薬やガラス器具を置く場合は、落下しないように実験台の
	奥に置いている。
!	
<u> </u>	
·	試薬は適切に管理されているか?!
	試薬は適切に管理されているか?! 試薬ビンは仕切りのあるトレーに収納、あるいは保護ネット等で割れにくくしている。
	試薬は適切に管理されているか?! 試薬ビンは仕切りのあるトレーに収納、あるいは保護ネット等で割れにくくしている。 試薬棚には落下防止柵を設置している。
	試薬は適切に管理されているか?! 試薬ビンは仕切りのあるトレーに収納、あるいは保護ネット等で割れにくくしている。 試薬棚には落下防止柵を設置している。
	試薬は適切に管理されているか?! 試薬ビンは仕切りのあるトレーに収納、あるいは保護ネット等で割れにくくしている。 試薬棚には落下防止柵を設置している。 発火性の試薬(金属ナトリウムなどのアルカリ金属や有機金属、黄リンなど)混触発火
	試薬は適切に管理されているか?! 試薬ビンは仕切りのあるトレーに収納、あるいは保護ネット等で割れにくくしている。 試薬棚には落下防止柵を設置している。 発火性の試薬(金属ナトリウムなどのアルカリ金属や有機金属、黄リンなど)混触発火 のおそれのある試薬の組合せ(過酸化ナトリウムや無水クロム酸などの酸化剤と可燃物、 オキソハロゲン酸塩と強酸など)に気をつけて試薬の置き場所を決めている。
	試薬は適切に管理されているか?! 試薬ビンは仕切りのあるトレーに収納、あるいは保護ネット等で割れにくくしている。 試薬棚には落下防止柵を設置している。 発火性の試薬(金属ナトリウムなどのアルカリ金属や有機金属、黄リンなど)混触発火 のおそれのある試薬の組合せ(過酸化ナトリウムや無水クロム酸などの酸化剤と可燃物、 オキソハロゲン酸塩と強酸など)に気をつけて試薬の置き場所を決めている。 重い試薬や危険な試薬は試薬棚の下段やドラフトの下に置いている。
	試薬は適切に管理されているか?! 試薬にどは仕切りのあるトレーに収納、あるいは保護ネット等で割れにくくしている。 試薬棚には落下防止柵を設置している。 発火性の試薬(金属ナトリウムなどのアルカリ金属や有機金属、黄リンなど)混触発火のおそれのある試薬の組合せ(過酸化ナトリウムや無水クロム酸などの酸化剤と可燃物、オキソハロゲン酸塩と強酸など)に気をつけて試薬の置き場所を決めている。 重い試薬や危険な試薬は試薬棚の下段やドラフトの下に置いている。

棚や大型実験用品の固定は徹底しているか?! □ 棚や冷蔵庫は壁に寄せて配置している。 □ 棚や冷蔵庫、ドラフト、実験台などは床と壁に数力所を固定している。 □ 可能な場所ではアンカーボルトを用いてコンクリートへの固定を行っている。 □ 扉や引き出しにはストッパーが付いている。(自動ロックが便利) □ ガラスの扉にはガラス飛散防止用フィルムを貼ってある。 □ 重い物を下に置き、重心を下げる工夫がされている。 機器類を守るための工夫はされているか?! □ 小型機器に落下防止策を施してある。(機器の手前の実験台上にでっぱりを施す。機器自 体を実験台にバンドで固定したり、フレームに固定する。耐震ジェルマットの活用) □ 大型機器は床に固定し、できるだけ低層階へ置いている。 □ 機器の周囲上部に落下しそうな物や倒れやすい棚を置いていない。 ボンベは安全に固定されているか?! □ 1本ずつ固定している。 □ ボンベ支持台は床のコンクリートにアンカーボルトで固定している。 □ 十分な強度のチェーン等でしっかりと固定されている。できるものは上下2カ所を止め ている。 □ 固定金具類はステンレス製のものを用いている。 □ 機器類にボンベをつなぐ場合、機器とボンベをつなぐチューブに数メートルの遊びをも たせている。 □ ボンベを取り替えたあと、チェーンがきちんとかかっているか、チェーンに対して適切 な大きさのボンベが置かれているか確認している。 □ 支持台やチェーンフックの錆防止や交換などのメンテナンスを定期的に行っている。 データの管理は水害や火災を考慮しているか?! □ 紙媒体はファイリングキャビネットに保管している。 □ データのバックアップは研究室以外の場所にも置いてある。 震災対策を維持する努力を行っているか?! □ 避難訓練と定期点検を行う体制ができている。 □ 震災を自分に起こる出来事として常に危機意識をもっている。

5. 人身事故、ケガについて

5. 人身事故、ケガについて

5.1 人身事故があった場合

学内で事故があったとき又はその場に遭遇したときは、慌てずその状況を的確に判断して、応急手当てなどを施し、教職員に報告します。医療者による判断や処置が必要な場合は、総合健康センター(連絡先は下記または裏表紙)に連絡して指示を仰ぐか、重症の時は「119番」で救急車を呼び、あわせて裏表紙に記載の連絡先に通報します。

[総合健康センターの利用方法]

下記のところに電話をかけ、次の内容を伝え、指示を仰ぎます。

- ・いつ、どこで、誰が、どこを負傷した
- ・意思の疎通は可能か
- ・移動は可能か(迎えの要否)

TEL 089-927-9193 (内線 9193) 利用時間 8:30~17:00 (土・日・祝日・年末年始の休日等を除く)

[夜間又は休日の場合]

同伴者と共に医療機関に向かい、担当教職員に連絡します。負傷の程度、急病など緊急を要するときは、救急車の出動を要請します。救急車を要請した方がいいか、今すぐ病院を受診した方がいいかなど判断に迷う場合は、救急安心センター事業「‡7119」に電話をかけて専門家に相談します。

救急安心センター事業 TEL #7119 利用時間 24時間365日対応

5.2 薬品によるケガ

薬品が付着したり体内に入ったりした場合は、すぐに取り除くことが必要です。しかし、薬品によっては、皮膚に触れたときに水で流すと悪化する物質や、誤飲した際に嘔吐してはいけない物質もあります。そのため、日頃より、自分が使用する薬品についての情報を収集し、緊急時の対応まで熟知しておくことが必要です。

万一、化学物質や動植物の毒により急性中毒が起こっている場合は、下記の中毒110番に電話すると情報提供を受けられます。その際は、患者の情報や中毒原因物質、中毒事故の発生状況(摂取量や接種経路、発生時刻等)、患者の状態などを伝えられるようにしておきましょう。

(財)日本中毒情報センター [https://www.j-poison-ic.jp/]

中毒**110**番 (大阪) TEL 072-727-2499

(筑波) TEL 029-852-9999

24時間365日対応

5.3 出血を伴う外傷

傷口の汚れを水道水で徹底的に流し、清潔なガーゼ等で出血点を圧迫し傷口を心臓より高く挙

げて止血します。他人の出血を伴う外傷の応急手当を行う場合には、使い捨ての手袋もしくはビニール袋等を利用し、自らの感染予防に努めてください。

※指や腕などが切断された場合には、切断後の時間や切断創の状態によっては再接着が可能な場合があります。切断された指は、湿ったガーゼまたはラップで包んでからビニール袋に入れます。さらに、そのビニール袋を外側から氷で冷やした状態で保存しながら、速やかに病院まで運んでください。冷凍保存は、凍傷により組織を損傷するため避けて下さい。なお、不全切断(指の一部が繋がったままの状態)の場合は、損傷部を速やかに冷やしておいてください。

5.4 火傷

やけどに対する冷却は、痛みを和らげ、やけどの深さや腫れ、感染などを減らします。速やかに水道の流水で痛みが和らぐまで冷やします。広範囲の火傷患者は、ショック状態におちいるので、清潔なシーツやタオルで覆い毛布にくるんで保温し、病院に急送します。またこの場合、冷却しつづけると体温が極端に下がることがあるので過度な冷却(10分以上の冷却)は避けましょう。

5.5 打撲·捻挫

打撲・捻挫の基本の応急処置は『RICE処置』といいます。

Rest…安静にする(動かさない)

Ice…冷やす(腫れを抑えたり、痛みを和らげたりする)

Compression…圧迫する(伸縮性の包帯などを巻き、患部を圧迫する)

Elevation…上に挙げる(血腫の形成を最小限に抑える)

打撲の場合、患部を氷水などで冷やして痛みや発熱を抑え、なるべく患部を動かさないように してください。痛みが激しい場合、変形、大きな傷があれば骨折・脱臼の可能性があるので、患 部を布またはラップ等で固定し病院を受診しましょう。

捻挫の場合、患部を氷水などで冷やし、安静にしましょう。患部をもんだり、無理に動かした りしてはいけません。布またはラップ等で固定し、枕や座布団などで患部を少し高くすると、腫 れを少なくすることができます。それでも腫れや痛みが続くようなら病院を受診しましょう。

5.6 感電

すぐスイッチや電源を切り、電流を止めます。その際、救助者が感電しないよう、乾いた棒、布、不良導体の手袋を用いて感電から引き離すようにします。呼吸停止あるいは呼吸が浅いときは、 人工呼吸をしながら救急車を呼びます。傷の処置は、火傷のときと同じで、保温、安静にします。

5.7 体位管理

救急隊が到着するまでは、傷病者が望む楽な姿勢にして安静にします。ただし、車が通る路上など危険な場所にいる場合は、安全な場所に移動させます。また、心肺蘇生が必要となる場合には仰向けにします。この場合、頭や首がねじれないように頭を支えてあげてください。

5.8 心肺蘇生法の手順

心肺蘇生はエアロゾル(ウイルスなどを含む微粒子が浮遊した空気)を発生させる可能性があ るため、新型コロナウイルス感染症が流行している状況においては、すべての心肺停止傷病者 に感染の疑いがあるものとして対応する。

二重枠は新型コロナウイルス感染症流行下の1次救命処置の変更点

意識のない人を見つけた 目の前で倒れた

反応の確認の際に顔を 近づけすぎない

周囲の安全を確認する 傷病者に近づいて反応(意識)を確認し、反応がなければ応援を呼ぶ

緊急通報とAEDを要請する

AEDを取りに行く

呼吸を確認する

顔を近づけすぎない

胸とお腹の動きを見て「普段どおりの呼吸」をしているか 10秒以内で確認

呼吸がない、普段どおりではない、分からない場合

乾いたハンカチやタオルなどがあれば鼻と口にかぶせる *マスクや衣服などでも代用可

CPR (心肺蘇生法) を開始する

*胸骨圧迫

強く(約5cm 小児は胸の厚さの約1/3)

速く(100~120回/分)

絶え間なく (中断を最小にする)

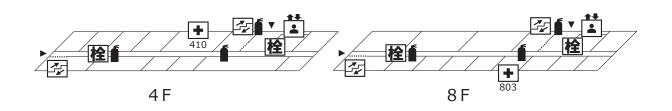
成人の心停止:人工呼吸を行わず 胸骨圧迫とAEDによる電気ショックを実施する AEDで解析 指示されればショックを行う

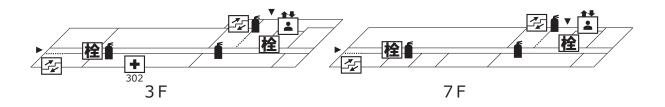
工学部付近においてAED (自動体外式除細 動器) は以下の場所に設置されています。 ※夜間、休日は施錠されていますので、屋内 のAEDを使用する時は、職員証、学生証 で入棟ください。

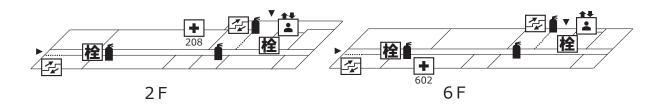
- 1. 工学部本館 1 F 玄関(屋内)
- 2. 工学部 2 号館 1 F 東出入口(屋内)
- 3. 総合研究棟2 1 F 中央出入口(屋内)
- 4. 総合研究棟2 1 F 西出入口(屋外)

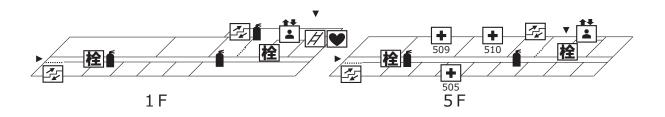
【救急隊の到着後】

傷病者を救急隊に引き継いだ後は、凍やかに石鹸と流水で手や顔などの肌が露出している部分 を十分に洗いましょう。傷病者の鼻と口にかぶせた乾いたハンカチやタオルなどは直接触れな いようにして廃棄しましょう。

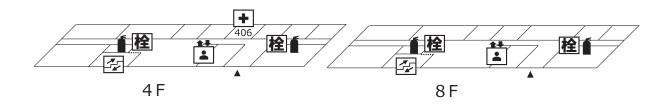

救急用品リスト

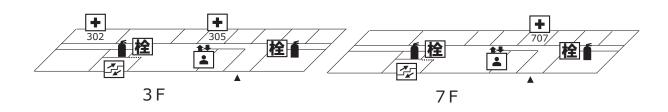

工学部で配置している救急箱の中には,下表の救急用品が入っています。用法・用量を守って正しくお使いください。

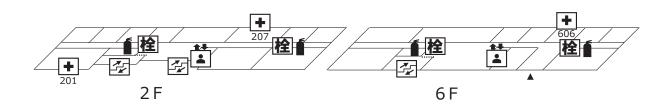

No	品名	用途
1	防水絆創膏	
2	絆創膏 (4 サイズ)	
3	伸縮包帯	
4	ネット包帯 ひじ	傷口の保護
5	ネット包帯 ひざ	
6	医療ガーゼ	
7	滅菌ガーゼ	
8	メディカルはさみ	包帯, ガーゼの切断
9	ピンセット	ガーゼの保持
10	サージカルテープ	包帯,ガーゼ等を患部に固定
11	オロナイン	外傷治療薬
12	キズ洗浄消毒液	外傷治療薬
13	ワセリン	外傷,やけど等の患部の保護
14	除菌ウェットティッシュ	菌やウイルスの除菌

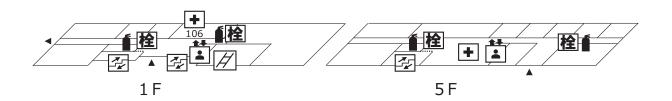


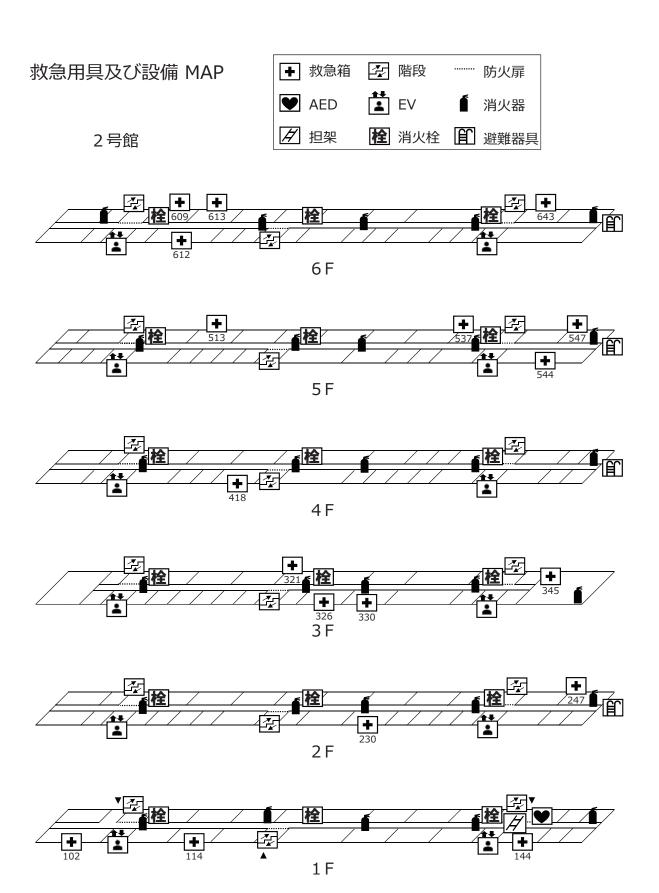
本館

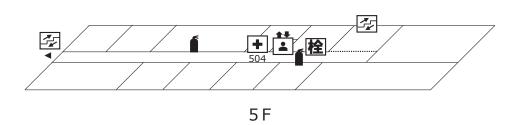


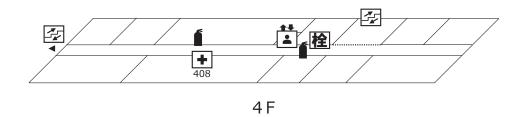


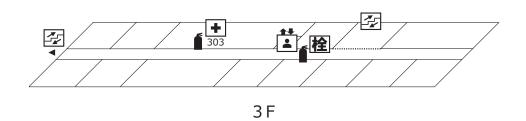


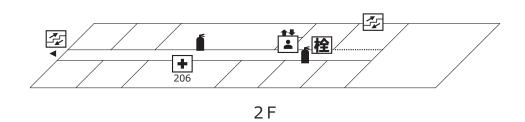


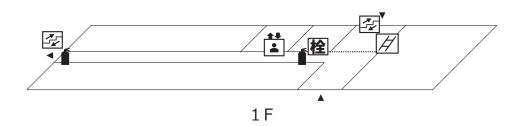

1号館

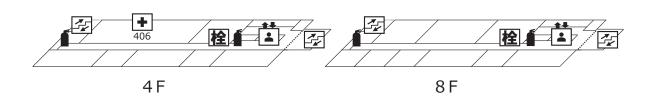


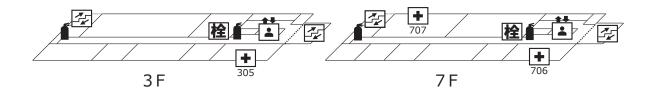


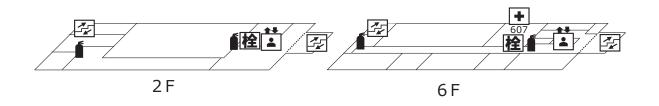


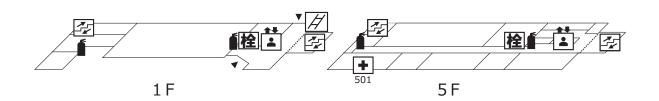


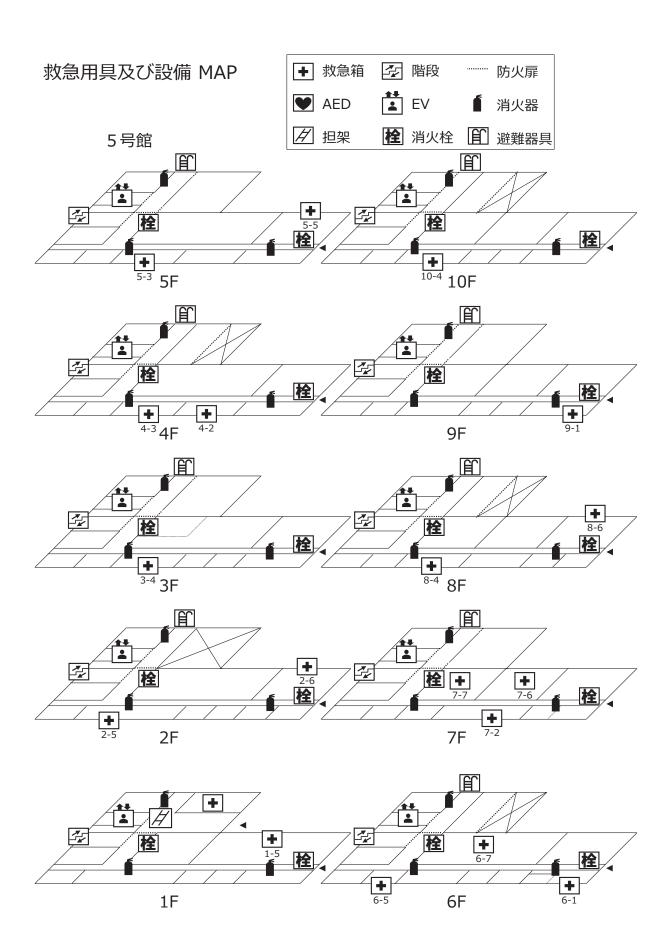

3号館










4号館

5.9 各種薬品に対する処置

以下の試薬などを使う際には、万一の場合に備えて、予め必要な緊急処置方法を確認・準備し、 事故が起きた時は、可能なかぎり早く病院へ搬送しましょう。

(1) フッ化水素酸

皮膚に触れた場合は内部まで浸透するので、できる限り長時間水で洗い、マグネシア 泥膏 (酸化マグネシウム20g、グリセリン80g) で覆い、乾いた包帯をします。呼吸器が 冒されたときは絶対安静を保つようにします。

(2) 塩素ガス

呼吸器障害に対し、希アンモニア水を染みこませた脱脂綿を短時間ずつかがせます。 アルコール、エーテルなど混液の蒸気吸引も気道の刺激緩和に役立つといわれています。

(3) 一酸化炭素

新鮮な空気中に搬出し(患者を歩かせてはならない)安静と保温に注意します。重症者は、高圧酸素治療が有効ですので救急病院でその旨を告げます。それが利用できない時は30分以内に2 ℓ以上の交換輸血が効果的なので、早急に医師の指示により血液の手配をします。意識回復後は、2~3時間は絶対安静、数日間は休養が必要です。

(4) シアン化水素・シアン化物

新鮮な空気中に搬出し、生命の危険をともなうことが予想されるので、速やかに医師に診せます。

(5) 二酸化窒素

曝露後かなり遅れて突然発症します。呼吸器症状が軽度でも酸素吸入を行います。肺 水腫を主症状とします。口、鼻、眼の粘膜、皮膚を1%重曹水で洗浄します。

(6) 硫化水素

5% CO₂を添加した酸素の吸入が有効とされます。眼については、洗眼と損傷結膜感染防止が必要です。

(7) 黄リン

治癒困難な第2度又は第3度の火傷を生じやすいものです。水中から大量の流水で洗い流します。火傷による5%の重曹水を注ぎ、ついで5%硫酸銅液で洗浄し、リンを固定してピンセットでとることとなるが、無理にはがしてはいけません。

(8) 有機溶剤

主に呼吸器からの侵入による中毒ですが、経皮吸収もあります。一般に麻酔作用があり、 重症の場合は意識障害、呼吸中枢麻痺を起こします。救急処置は一般的方法と同じですが、 体表の洗浄には合成洗剤と水を用います。後遺症が残ることがあるので注意が必要です。

(9) 酸素欠乏

短時間で致命的な状態になるので、速やかに新鮮な空気中に搬出します。人間が正常に活動できる気中酸素濃度は16%以上です。10%前後で呼吸困難、7%前後では短時間に意識不明、呼吸停止となります。救助者が道連れにならないよう酸素呼吸器、命綱などを用います。防毒マスクは無効です。

6.	休日及び夜間における無人実験	・無人運転

6. 休日及び夜間における無人実験・無人運転

実験の性質上、休日や終夜に無人で実験・機器の運転をする場合があります。また長時間の実験では装置から離れる場合もあります。その際、機器の特性をよく理解し、十分に安全策を立てておくべきです。また、休日や終夜に無人で実験・機器の運転をする時には、「実験室等における実験及び実習等のリスクアセスメントに関するガイドライン」に基づきリスクアセスメントを行い、作成した「様式3」を実験室戸外に掲示する必要があります。

6.1 無人運転

長時間に亘り実験者の目に触れないことを考え、装置の暴走などに対策を講じておくべきです。

- (1) 無人運転中の停電
 - イ)無人運転中、停電しても事故に至らぬように考えておきます。
 - ロ) 一旦停電し、また通電される場合があります。担当者が来るまでは装置は停止の状態の方が安全ですから、復帰後、装置が安全側に動くよう OFF-OPEN ではなく、OFF-SHUT となるようにするべきです。

(2) 給排水関係

よく起こる事例であり、このため装置が損傷することがよくあります。

イ) 冷却水による洪水

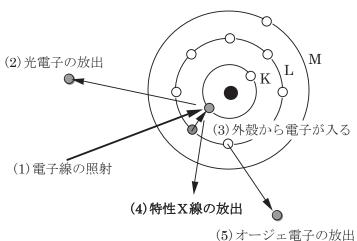
夜中は、水圧が上がるのでゴム管が止め具から抜けたり、ゴム管の先が踊って流しの外へ逃げたりすることがあります。締め具(洗濯機、自動車のラジエーター用などで使われている)を用いて完全に固定します。またゴム管は老化するので、ヒビの入ったものを使ってはいけません。

口)断水

無人運転中に予期せぬ断水のあることを考えておくべきであり、装置の過熱を防ぐ ため、あるいは装置を保護するため、圧力型断水リレーを用いて電源を切るようにし ておきます。

(3) 渦 熱

- イ) 電気炉、電気・ガスストーブなどの暖房器具の過熱により、火災に至ることがあります。 消し忘れ、周囲の整理には十分注意を払うべきです。
- ロ)油浴恒温槽や油拡散ポンプなどの油類も一度劣化がはじまると、加速度的に進み装置 の過熱の原因となります。適時廃棄交換しましょう。


7.	X線発生装置、	レーザ装置等に関わる安全

7. X線発生装置、レーザ装置等に関わる安全

7.1 X線発生のしくみ

X線回折装置などで使用される X線は、高速の電子線を金属ター ゲットに衝突させることにより発 生させます。右図で説明すると、 電子線の照射(1)によりターゲットの金属原子中の内殻の電子が光 電子として放出され(2)、その空 席に外殻の電子が入り(3)、外殻 の電子の方が内殻の電子よりも多 くのエネルギーをもっているため、

(5)オーシェ電子の放出

そのときに余ったエネルギーによりX線が放出され(4)、さらにオージェ電子として外殻の電子が放出され(5)、この2種類の方法でエネルギーが消費されます。このときに発生するX線の波長は、例えばCuターゲットならば最も強度の高いKα1線は0.15405nmと固有の値をとり、これを特性X線といいます。固体試料に電子線の代わりにX線を照射しても同様の過程で光電子やX線が発生します。これにより発生したX線は特性X線の中でも蛍光X線とよばれ、元素の種類により発生するX線の波長が異なることを利用して材料の元素分析(蛍光X線分析)に用いられます。一方、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)でも、固体試料に高エネルギーの電子線を照射するため試料からX線が発生します。

7.2 人体への影響

X線回折装置などのX線発生装置で発生するX線の波長は0.05nm~0.25nmと小さいため、非常に強いエネルギーをもっています。このX線を許容量以上に浴びると人体の組織が破壊される放射線障害を起こすばかりか、特に生殖機能に遺伝的な突然変異を起こすような影響を及ぼすことが知られています。従って、X線を発生する装置の取扱いには十分注意する必要があります。

7.3 X線発生装置の使用に関する注意

X線回折装置などのX線発生装置などを利用するにあたっては、必ず管理責任者の許可を得た後、管理責任者の指示とマニュアルに沿って使用してください。また、X線の発生中にX線発生装置には必要以上に近付かず、被爆を最小限におさえるよう心掛けてください。特に、X線の発生中に、X線を遮蔽するための鉛ガラスの隙間に顔を近付けたり(被爆の危険があります)、装置の後ろに回り込んだり(被爆と感電の危険があります)することは絶対に避けてください。

X線発生装置の管理責任者は、下記の基準に従い常に安全に使用できるよう努めてください。

(1) X線発生装置を安全に取り扱うためのマニュアルを表示します。

- (2) X線発生装置にX線発生中を知らせるための赤色警告灯を付けます。
- (3) X線発生装置からの発生X線の遮蔽(遮蔽効果を有する鉛ガラス板などによる)を行います。
- (4) 定期的に放射線計測を行い、装置外に漏れるX線が基準値に満たないことを確認し、その結果を管理責任者が報告します。また、基準値に匹敵あるいは高いX線が計測された場合は直ちに装置の使用を停止し、安全対策を講じます。
- (5) 各装置の管理責任者が上記の安全基準が守られているかを定期的に調べます。

7.4 走査電顕・透過電顕などに対する注意

電子顕微鏡から発生するX線は、試料が金属製の密閉された装置内にあるためX線の遮蔽が十分に行われており、上記のX線発生装置と比べ被爆量はかなり少ないものの、その使用には十分注意してください。電子顕微鏡を利用するにあたっては、必ず管理責任者の許可を得た後、管理責任者の指示とマニュアルに沿って使用してください。また、管理責任者は定期的に放射線計測を行い、装置外に漏れるX線が基準値に満たないことを確認し、その結果を管理責任者が報告してください。

7.5 レーザ装置の取扱い

レーザ光とは、誘導放出により発生及び増幅される可干渉光を指します。レーザ光は、一般的に指向性が強く高出力ですので、特に取扱いに気をつけなければいけません。レーザ光の波長領域(赤外、可視、紫外)のそれぞれにおいて取扱いの注意事項が異なります。また、時間的に連続したレーザ光と、瞬時に大きなパワーを示すパルスレーザ光でも注意事項が異なります。したがって、使用するレーザ装置に対応して安全対策をとることが必要です。レーザ装置共通の安全策として、

- 1. レーザ光を目に入れてはいけません
- 2. レーザ光を皮膚にあててはいけません

の二つが原則です。

また、レーザ装置の安全を確保するためには下記のようなレーザ装置の仕様を確認をすることが第一歩です。

- (1) レーザ装置の種類を確認します(He-Neレーザ、Arイオンレーザ、YAGレーザなど)。
- (2) 波長を確認します。波長は必ず記憶にとどめ、赤外、可視、紫外のいずれであるかを必ず確認してください。
- (3) 連続波(CW)かパルス波かを確認します。レーザ装置の出力を確認します。連続波であれば単位は(W)です。パルスレーザの場合、ピーク出力(W)、1パルスあたりのエネルギー(J)、パルス幅(s)、繰り返し周波数(Hz)、平均出力(W)を必ず確認してください。
- (4) レーザ装置のマニュアルにある安全上の注意を必ず読んでください。

7.5.1 目の保護に関して

レーザ光は非常に指向性の強い平行光ですから、わずかなパワーの光でも、単位面積あたりのパワーは非常に大きくなります。レーザ光が目に入りますと、光は目のレンズにより網膜に焦点を結びます。学生実験などでよく用いられるわずか1mWのHe-Neレーザ(赤色連続光、632.8nm)ですら、直視すれば失明の危険があります。従ってどんなレーザであれ、レーザ光の直視は厳禁です。

7.5.2 保護めがねの着用による目の保護

すべての波長領域に対応できる保護めがねはありません。単一波長のレーザであれば、その波 長を完全にカットできる保護めがねを着用します。レーザをどれだけカットできるかは、めがね の光学濃度(OD値)で決まります。レーザの出力と光学濃度によりめがねを透過するレーザ光 のパワーをあらかじめ見積もっておくことは重要です。また、保護めがねには、前面からの光を カットする眼鏡型やゴーグルのように側面からの光もカットする型のように数種類の型がありま すので、目的に応じて安全な型を選んでください。

特に赤外や紫外のような不可視レーザ光の放射のある実験室内では、レーザビームが見えませんので必ず保護めがねを着用してください。紫外レーザは不可視光で光軸は見えませんが、ビームが壁や衣服などの物体にあたると蛍光を発するため、おおよその危険を察知することができます。しかし、赤外光を発するYAGレーザ(基本波1064nm)や赤外半導体レーザ(800~1000nm)は不可視で光軸は見えないばかりか、物質に照射されても蛍光を発しませんので非常に危険です。また、これらのレーザには非常に高出力のものが多いため、壁などからの散乱光があった場合、光を認識することができませんので細心の注意を払う必要があり、横からの光から目を保護するためにゴーグル型の保護めがねが適当と思われます。

また、ArレーザやKrレーザのように複数の波長を同時に発振するレーザや、YAGレーザのように基本波(1064nm)と第 2 高調波(532nm)を同時に発生するレーザもありますので、それぞれの波長における透過特性を確認してください。

保護めがねには、吸収型と反射型があります。プラスチック製の吸収型では表面の傷防止コーティングをしたものが望ましく、反射型では傷により透過率が大きく変化するうえ、光線の入射角度により性能が変化することに留意する必要があります。

7.5.3 身体へのレーザ光の照射の防止

高出力のレーザ光に過度に暴露された場合、皮膚及び身体にやけどなどの大きな影響が生じます。

紫外光:波長が短いためエネルギーのほとんどが皮膚で吸収されます。また、化学変化を誘発するため、火傷に至らなくても皮膚の色素の変化、波長によっては遺伝子障害や皮膚ガンを引き起こすおそれがあります。従って、皮膚に対する照射は最小にとどめなければいけません。遺伝子障害の防止には防護服の着用が必要です。

可 視 光:強いレーザ光の場合、主に火傷が生じます。

赤 外 光: 熱線といわれることもあります。物質との相互作用が小さいため、皮膚を通り越し人体の深いところまで到達し、最終的に熱に変わります。従って、人体の深い部分まで火傷により損傷を与えます。高出力のYAGレーザ(1064nm)や CO_2 レーザ(10.6 μ m)を使用する場合は特に気をつけてください。

パルスレーザ: QスイッチYAGレーザやQスイッチルビーレーザではピークパワーでMW-GW の大変強力なレーザ光を扱うことがあります。これらのレーザパルスを皮膚に 受ければ、火傷や水膨れを起こします。

7.5.4 実験装置

光軸の高さは作業時の目の高さにならないよう注意します。

光学素子からの、反射や散乱光が目の位置に来ないよう、実験装置のセッティング時に調整し、 実験前に確認します。

光軸や反射光及び散乱光の確認は、可視レーザは目視で可能ですが、非可視の紫外光では蛍光板を用いて、赤外光では赤外用蛍光体(IRフォスファー)やIRビューワーを用いて光軸を確認します。ただし、赤外用蛍光体の感度はそれほど良くないことに注意して下さい。

レーザビームの終端には適切な反射率と熱特性を持つ拡散反射体又は吸収体を用いて下さい。 強いレーザビームが壁、実験機器あるいは暗幕に照射されますと、発火や火災の原因となります。 レーザ使用中は臭いや煙にも気をつけてください。

主なレーザの種類

種類		沖 臣 (出力		
	1	類 類	波長(μm)	連続	パルス
	He-Ne		0. 6328	1~50mW	
	Λ	/ - 	0. 5145	0.1~10W	
	Ar^	イオン	0. 4880	0.1~10W	
ガスレ	Kr-	イオン	0. 6471	1~10W	
リーザ	TT.	C1	0. 6250	1~100mW	
	Не-	·Ca	0. 4417	1∼200mW	
	エキ	ラシマ	0.2~0.4	~2J	
	窒素		0. 3371	~mJ	
	Y A G	基本波	1.064	1~500W	~50J
固		第2高調波	0.532	1~10W	~10J
体レー		第3高調波	0.355		
ザ	ザ	第4高調波	0. 266		
	ルヒ	ニーレーザ	0. 69		~20J
色素レーザ	R60	6色素	0.5~0.65	0.1~10W	
半道	GaA	ls系	0.7~0.9	0.001~100W	
半導体レ	GaI	nAlP系	0.63~0.7	0.001~0.5W	
ザ	GaN	N系	0.41	0.001~0.1W	

過度のレーザ光に露出した場合の障害

V	ーザ	光の種類	波長	眼	皮膚
(HA.	С	(UV-C)	100~280nm	角膜障害	日焼け、皮膚老化促進、
紫外線	В	(UV-B)	280~315nm	,	色素増加
70,1	A	(UV-A)	315~400nm	角膜障害、白内障	火傷、色素の黒化、
可	視	光線	400~780nm	網膜損傷	光反応
	A	(IR-A)	780~1400nm	網膜損傷、白内障	
赤外線	В	(IR-B)	1. 4~3 μ m	角膜障害、白内障	火傷
MAT	С	(IR-C)	3 μ m∼1nm	<i>円既</i> 牌音、口門県	

レーザにおけるクラス分け

クラス	クラスに関する解説
クラス 1	直接ビーム内観察を長時間行っても、またそのとき、観察用光学器具(ルーペ又は双眼鏡)を用いても安全であるレーザ製品。
クラス 1 M	裸眼(光学器具を用いない)で、直接ビーム内観察を長時間行って も安全であるレーザ製品。光学器具(ルーペ又は双眼鏡)を用いて 観察すると、露光による目の障害が生じる可能性がある。
クラス 2	400nm~700nmの波長範囲の可視光を放出するレーザ製品であって、 瞬間的な被ばくのときは安全であるが、意図的にビーム内を凝視す ると危険なレーザ製品。クラス 2 M とは異なり、光学器具を用いて も目に障害が生じるリスクは増加しない。
クラス 2 M	可視のレーザビームを出射するレーザ製品であって、(光学器具を 用いない) 裸眼に対してだけ短時間の被ばくが安全なレーザ製品。 光学器具(ルーペ又は双眼鏡) を用いて観察すると、露光による目 の障害が生じる可能性がある。
クラス 3 R	障害が生じるリスクが比較的小さいレーザ製品。目に障害が生じる リスクは露光時間とともに増大し、また意図的に目に露光すること は危険である。クラス 3 B と比べてリスクが低い。 クラス 3 R レーザは、直接のビーム内観察がありそうにない場合に ついてだけ用いるのがよい。
クラス 3 B	目へのビーム内露光が生じると、偶然による短時間の露光でも、通 常危険なレーザ製品。拡散反射光の観察は通常安全である。
クラス 4	ビーム内の観察及び皮膚への露光は危険であり、また拡散反射の観察も危険となる可能性があるレーザ製品。これらのレーザには、しばしば火災の危険性が伴う。

※この表は JIS C 6802: 2011 の附属書 C を抜粋した物である。

出典 JIS C 6802 : 2011 (IEC 60825-1 : 2007). レーザ製品の安全基準

8. 高圧ガス容器の取扱い

8. 高圧ガス容器の取扱い

8.1 高圧ガス容器について

- (1) 高圧ガス容器(以下、ボンベ)とは貯蔵や輸送に便利なようにガスを圧縮あるいは冷却して液体となっているガスを詰めた容器のことであり、詰められているガスを高圧ガスといいます。その定義は高圧ガス保安法第二条でされています。
- (2) ボンベが破損するとガスが一瞬で大量に噴き出し、大事故につながることを十分に認識してください。
- (3) ボンベは充填ガスの種類によって色分けされています。

酸素ガス:黒色水素ガス:赤色液化炭酸ガス:緑色液化アンモニア:白色アセチレン:褐色(茶)液化塩素:黄色

その他のガス:灰色

また、これとは別に可燃性、毒性の性質をもつガスはその旨明示されています。

(4) ボンベの肩の部分には、「容器番号」、「容器の内容積」、「容器の質量」、「耐圧テスト年月」、「耐圧試験圧力」、「最高充填圧力」などが刻印されていますので、内容をよく把握してください(図8-1)。

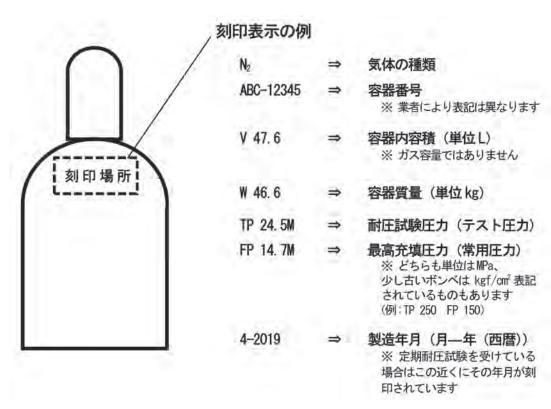


図8-1 ボンベの刻印

8.2 高圧ガス容器の購入・管理について

- (1) ボンベは高圧ガス供給事業者からレンタルする場合と、充填ガスを含めて買い取る場合とがあります。どちらの場合も「高圧ガス管理(発注・パトロール)システム」を利用して注文してください。納品時にはボンベに「管理番号」が記載されたボンベタグが付いてきます。ボンベ管理に必要ですので、必ずボンベに掛けて管理してください。
- (2) 保有するボンベは必要最低限になるように努め、買いだめ(借りだめ)してはいけません。
- (3) <u>ボンベのレンタル期間は1年です。</u>返却期限までに取引業者に連絡し、引き取ってもらってください。ボンベが空になった場合も放置せず、速やかに業者に引き取ってもらってください。
- (4) ボンベ (LPガス用ボンベも含む) を粗大ゴミとして廃棄してはいけません。
- (5) ボンベを返却するときは、「高圧ガス管理(発注・パトロール)システム」を利用して返却してください。
- (6) 次の場合は必ず「8.5 問い合わせ・連絡先」への連絡をお願いします。
 - ・ 学外から移設した、または学外へ移設した場合
 - ・ボンベタグが括り付けられていないボンベを発見した場合場合(装置付属の物や通販サイトなどで購入した物にも、ボンベタグをつける必要があります)
 - ・退職等により使用責任者の変更があった場合
 - ・ ボンベタグの記載内容に間違いがあった場合

8.3 高圧ガス容器の移動・保管等について

- (1) ボンベに衝撃を与えたり、粗暴に取扱ったりしてはいけません。ボンベの破裂などにつながり大変危険です。
- (2) 40℃以上になる高温の場所、直射日光があたる場所、湿気が多い場所、水滴がかかる場所に置いてはいけません。
- (3) 可燃性ガス、毒性ガスおよび酸素は各々区分して置き場に置かねばなりません。
- (4) 置き場の周辺は整理整頓し、不要な物を置かないようにしてください。また、置き場から2m以内は火気厳禁とし、引火性または発火性の物を置いてはいけません。
- (5) 地震による転倒防止のため、ボンベを壁または床にしっかり固定してください。
- (6) 置き場の出入り口付近の外から見やすい場所に、容器置き場であることを示す標識を掲げてください。また、可燃性ガスや毒性ガスがある場合はそれについても標示ください。
- (7) 高圧ガスを管理するためのグループおよび使用場所(表8-1)を確認してください。
- (8) ボンベを移動するときは、必ずバルブ保護キャップを付け、専用のボンベキャリアを使ってください。短距離の移動やキャリアを使用できないような狭いところでは、ボンベをわずかに傾け、保護キャップが緩まない方向に回転させながら動かします。引きずったり、横に転がしたりしてはいけません。

表8-1 文京3番地区ボンベ管理グループおよび使用場所

	グループ(保管場所)	使用場所
7	工学部5号館(イ及びシを除く。)	工学部5号館7階~10階
1	工学部5号館1階南高圧ガス容器置場	工学部5号館1階~4階
ゥ	工学部 1 号館	工学部 1 号館
I	工学部本館(才除く。)	工学部本館
オ	工学部本館1階高圧ガス容器置場	工学部5号館6階・総合研究棟112階
ħ	工学部3号館	工学部3号館
+	工学部2号館及び超高圧実験室	工学部2号館2階~6階·超高圧実験室
ク	生物環境試料バンク	生物環境試料バンク
ケ	プロテオサイエンスセンター及び学術支援センター	プロテオサイエンスセンター及び学術支援センター
コ	工学部実験実習棟及び工学部ボンベ庫	工学部実験実習棟・総合研究棟 1 階・社会連携推進機構
#	教育学部及び愛大ミューズ	教育学部及び愛大ミューズ
2	工学部5号館1階北高圧ガス容器置場	工学部2号館1階・工学部5号館5階

8.4 高圧ガスの使用について

- (1) 地震による転倒防止のため、壁やボンベスタンドに十分な強度のあるチェーンやベルト などでしっかりと固定して下さい。小型LPG容器のような小さな物を除き、上下2カ所を 固定します。また、固定する相手に十分な強度があるか考慮して下さい。
- (2) 密閉された部屋ではガス中毒や酸欠になる恐れがあります。換気に気を配りましょう。
- (3) 使用するガス種に適合する圧力調整器 (レギュレータ) を取り付けてください。継手部分は形状が異なり、右ネジの場合と左ネジの場合がありますのでご注意ください。
- (4) 水素やアセチレンのボンベには逆火防止弁を取り付けて使用してください。
- (5) ボンベの元弁の開閉は静かに行なってください。開けるときは充填口方向に人がいないことをあらかじめ確かめてください。
- (6) ガス使用時元弁は全開にします(ただし、アセチレンのボンベ(茶色)の場合は、その構造及び性質上1.5回転以上開けないようにしてください)。また、使用後は必ず元弁を締めておきます。
- (7) 視認性を良くするため、開閉表示を使用してください。
- (8) 定期的にレギュレータ計器の視認やスヌープを用いた簡易漏れ検査を行ってください。 漏れが疑われる場合はガスの消費を止め、レギュレータの脱着やパッキンの交換を行なっ てください。充填口からの漏れ(バック漏れ)がある場合は、業者に連絡ください。
- (9) 高圧ガス容器を使用する人は、毎年5月頃に学内開催される「高圧ガス保安教育講習会」 に必ず参加してください(日程等詳細は別途通知)。

8.5 問い合わせ・連絡先

高圧ガス容器関係についての問い合わせや連絡は下記へお願いします。

・工学部高圧ガスパトロール係

kouanzen@stu.ehime-u.ac.jp 担当:工学部等技術部 工学共通技術班(内線9909)

9. 液体窒素などの取扱い

9. 液体窒素などの取扱い

研究室では、半導体、超伝導体、磁性材料などの物性測定や、分析装置の検出器の冷却のため、特に液体窒素(-196°C)が頻繁に、場合によっては液体へリウム(-269°C)も使用されています。その使用で注意しないといけないことは酸欠と凍傷です。

9.1 液体窒素の取扱いにおける注意

液体窒素は、総合科学支援センター(城北)の大型貯蔵タンクから、専用の貯蔵容器(通常10ℓ)に移した後、各研究室へ運搬します。(この大型貯蔵タンクの利用者または使用予定者は年1回の講習を受講しなければなりません。講習会は毎年5月初旬に予定されています。)この貯蔵容器は必ず専用容器を用いてください。液体窒素の容器は2重構造になっており、その2層間は真空に保持されています。液体窒素の使用する際の注意点は、

(1) 換気のよい場所で使用・保管する。

液体窒素を、密閉した空間で使用すると、酸素濃度が減少し酸欠状態になります。必ず換気をしながら使用してください。特に、密閉性の高いクリーンルームでの使用は充分注意してください。また、貯蔵容器の保管場所も換気のよい場所とし、狭い倉庫などに置いておくと酸欠状態が生じてしまい大変危険です。

(2) 取扱いを慎重に!

液体窒素が蒸発して気体になると体積が約1000倍になります。例えば、10ℓの貯蔵容器の液体窒素が全部揮発すると10㎡にもなり、エレベーターや狭い空間で誤って液体窒素をひっくりかえしてしまった場合、瞬時に酸欠になり極めて危険な状態になります。液体窒素の取扱いは慎重に行い、安定した場所に換気をしながら保管してください。また、運搬にエレベーターを使用する場合、愛媛大学工学部の全てのエレベーターは地震の際には自動的に最寄りの階で扉が開きますが、停電時にはそのまま停止して扉は開きません。停電が長時間に渡る場合、蒸発した窒素ガスで窒息する危険があります。各エレベーターの1Fには、液体窒素をエレベーターで運搬するときに使用する「液体窒素運搬中!」と書かれた標識を置いてあります。エレベーターには運搬者は同乗せず、目的の階に誰かを待機させた上、この標識を乗せて無人で運搬してください。

(3) 液体窒素は、濡れた手袋をして取り扱わないこと。

液体窒素が水に濡れた手袋にかかると、手袋が凍結してしまい、手から外れなくなり 非常に危険です。水のしみ込み易い布製ではなく、しみ込みにくい革製などの手袋を使 用しましょう。また、液体窒素の容器や汲み出すためのポンプ、それらに付着している 氷なども、液体窒素温度に近い極低温になっていることがありますので充分注意してく ださい。

(4) 液体窒素中に室温の物体を投入するときは、徐々に入れてください。急激に投入すると 激しい沸騰が生じ、液体が溢れ出て危険です。もちろん、その際の換気には充分注意が 必要です。

9.2 酸欠と凍傷の処置

特に、液体窒素が揮発した酸素濃度 0%の窒素ガスを吸うと、1回の呼吸で意識不明となります。酸欠状態が発生し、気分が悪くなった者や意識不明になった者を発見した場合は、まず部屋の換気を充分行った後、部屋の外に連れ出し(必要に応じ酸素マスク着用)、衣服の首まわりをゆるめて、酸素吸入を行う必要があります。もし、呼吸が停止している場合は人工呼吸(5.8 参照)を即座に行ってください。

凍傷については、液体窒素は蒸発が早いため人体にかかる程度では凍傷にはなりませんが、一定時間以上液体窒素をあびると瞬間的に人体組織が凍結してしまいます。この凍傷の処置は火傷と同様で、まず水で数十分冷やした後、適切な処置(5.3 参照)をとりましょう。

9.3 液体ヘリウムの取扱いにおける注意

液体ヘリウムの容器は3重構造になっており、これは外隔に容器を予冷却するための液体窒素を入れるためです。液体ヘリウムは、運搬時の振動で気化が促進され易く、容器の真空が破壊されると一瞬で蒸発し、容器爆発の危険があります。取扱いには技術と熟練が必要ですので、必ず教員立ち会いのもとで汲み出し、運搬、実験を行いましょう。液体ヘリウムそのものの使用量よりも予冷却のための液体窒素の方が多いため、液体窒素による酸欠や凍傷にも注意が必要です。外隔の液体窒素量が少ない状態で液体ヘリウムを保存すると、気化により圧力上昇が大きくなるので注意してください。従って、液体窒素用の容器は予冷却用の外隔がないため、液体ヘリウムを入れることは不可能です。

10. 振動、粉塵対策について

10. 振動、粉塵対策について

10.1 振動対策について

(1) 振動(対策) について

振動を発生し、手で保持して使用する工具(削岩機、ピッチングハンマー、グラインダーなど)をかなり長時間にわたり使用すると、手指・上肢のしびれ・痛み・こわばりなどの神経症や手指の蒼白現象などの抹消循環障害などのほか、上肢の骨・関節・筋肉などの障害が起きることがあります。

また、全身に振動が作用すると、不快感、注意の散漫、作動の困難、視覚障害、特有 の全身疲労をもたらすなどの悪影響を及ぼします。

したがって、振動をともなう作業をするにあたっては、それを防止する対策を施して おくことが大切です。

- (2) 振動をともなう作業にあたって(振動対策)
 - イ)できる限り低振動で軽量な工具を選ぶことが大切です。
 - ロ)作業時間を短くし、数人で作業ローテーションを行うなどして、振動暴露時間を軽減 させることが重要です。
 - ハ) 可能であれば、振動作業を自動化することが、振動障害を起こさないための一番良い 方法です。

10.2 粉塵対策について

(1) 粉塵(対策) について

粉塵を発散する実験、作業においては、実験者、作業者が粉塵にさらされて健康障害 を起こすことがないように防止対策を施すことが大切です。

- (2) 粉塵を発散する作業にあたって(粉塵対策)
 - イ) 岩石を掘削したり、金属を研磨するなどの粉塵を著しく発散する実験・作業においては、 呼吸用保護具など適切な保護具を装着します。
 - ロ) 実験室、作業場には、プッシュプル型の換気装置あるいは局所排気装置などを設置することが大切です。
 - ハ) 設備、作業工程、作業方法、作業環境などの改善を図るとともに、作業時間の短縮、 作業の転換、就業場所の変更などの適切な措置を講ずることも大切です。
 - 二) 粉塵が発散される作業場では、毎日1回、堆積した粉塵が再飛散しないよう、それら を除去するための清掃を行うことが大切です。

11. 情報機器作業について

11. 情報機器作業について

11.1 情報機器作業に伴う健康障害

VDT機器、タブレット、スマートフォン等の情報機器を使用して長時間作業を行うことで健康障害が起こることがあります。具体的には、目の疲れ、頭痛、肩こり、めまい、手足のしびれ、ひどくなると吐き気まで起こすことがあります。また、精神的にもイライラしたり落ち着きがなくなったりすることがあり、最終的には自律神経失調症や精神障害、思考力や判断力の低下を引き起こし、情報機器作業を続けることが困難になります。情報機器作業による健康障害は、自覚症状の方が先行して発症するといわれています。

11.2 情報機器作業に伴う健康障害の現状

近年、情報機器の技術革新により、コンピューターなどにおける表示装置(VDT機器)のみならず、タブレット、スマートフォン等の携帯用情報機器を含めた情報機器が普及し、これらの情報機器の使い過ぎによる健康障害が起きています。情報機器作業を行う多くの人が少なからず健康障害を持っていると言われています。

11.3 情報機器作業に伴う健康障害への対策

情報機器作業に伴う健康障害は情報機器を使わずに休息をとると徐々に回復しますが、パソコンだけでなく携帯電話やゲーム機など、情報機器が広く世間一般に普及した今日ではなかなか回復することができず、むしろ症状を悪化させて心身の不具合など、とりかえしの付かない状況に至ることもあります。また、若いうちは大きな問題が無くても、情報機器による心身的ダメージが進行し、加齢とともに発症し、悪化することもあります。そのため、常日頃の生活において予防することが必要です。

対策 1:情報機器作業を行うときは、1時間に10~15分間程度の休憩を入れ、体操などで体を ほぐします。

対策2:室内の照明を適度に明るくし、情報機器画面とその周辺の明るさが極端に違わないようにします。

対策3:表示画面に照明や外の景色が映ると見にくくなります。疲れたときのために、遠くの見やすい場所に観葉植物などを置き、目の休息点を設けるとよいでしょう。

まとめ:明るすぎる画面や騒音などの不快な作業環境は精神を興奮状態にさせます。長時間の 興奮状態は心身に悪影響を与えることに注意してください。

11.4 参考文献

1) 衛生管理(上)<第一種用>. 中央労働災害防止協会. 令和4年3月, 第12版, p. 101-102, p. 184-185

12. 機械系の安全衛生

12. 機械系の安全衛生

12.1 一般的注意事項

12.1.1 服装及び健康状態

- (1) 服装は、袖や裾が機械・装置類に引っかかる危険がなく、汚れてもよいようなものにしましょう(衣服が汚れるのが気になり、ケガをする事が多い)。また履物は、身軽に動作できて、つまずいてもケガをしないような靴にしましょう。できるだけ作業服、作業靴を着用しましょう。
- (2) 回転機械類に巻き込まれる恐れのある手袋、長髪、ペンダント、ネクタイなどをしてはいけません。
- (3) 大型供試体を扱う場合には、安全靴及びヘルメットなどを着用しましょう。
- (4) 野外実験・実習、測量実習などでは気候、天候、現地状況、作業内容などを勘案した服装をしましょう。場合によっては予測されるケガに対応した救急用品を準備しましょう。
- (5) 体調がすぐれないときは、いかなる機械類・装置も操作してはいけません。

12.1.2 機械類・装置の使用にあたって

- (1)機械類・装置の使用にあたっては取扱い説明書を熟読し、取扱い方法、調整方法、メンテナンス方法を習得しておきましょう。不明な点があれば、教職員に聞きましょう。
- (2) 機械類・装置を操作する場合は、常に危険と隣り合わせにいることを強く認識しておきましょう。
- (3) 操作する前に、起こりうる事故を想定して、その予防策を講じておきましょう。
- (4) 万一のことを考えて、緊急停止方法を常時考えておきましょう。
- (5) 操作中は雑談などせず、機械・装置に注意を集中しましょう。

12.1.3 作業場環境等

- (1) 作業場周辺の整理整頓を心がけ、不要な材料、工具は置いてはいけません。
- (2) 足下の物につまずいたり、床にこぼれた油で滑ってケガをしたりしないようにしましょう。 廊下や階段、通路に物をおいてはいけません。
- (3) 作業終了後は必ず掃除しておきましょう。工具・器具は、使用後所定の位置に返却しましょう。整理整頓が安全の第一歩です。
- (4) 高いところに置かれた重量物や、背の高い重量物が何かのはずみで落ちたり倒れたりしないように固定しましょう。
- (5) 高所での作業に際しては、転落しないように注意しましょう。無理な姿勢での工具の使用を避け、工具や器具を落とさないように注意するとともに、架台周辺で作業する人は、 落下物から身を守るためヘルメットを着用しましょう。
- (6) 重量物を2人以上で運ぶ場合には、他の人がころんだり、力をゆるめたり、手足をはさまれたりすることのないように注意し、慎重に取扱いましょう。

12.1.4 電力の使用

- (1) 電気機器の使用にあたっては、感電事故を防止するため、身体(特に手)や衣服が濡れた状態での作業は厳禁です。
- (2) 機械の電装品を修理したり取り替えたりする場合は、配電盤の元電源を遮断し、それを確認してから行いましょう。
- (3) 作業で使用する水が、配電盤、運転スイッチ、モータ、コンセント、計測用電子機器などにかからぬよう心掛けましょう。
- (4) 電気系統の配線は必ずスイッチを切った状態で行います。計測器の結線時には、接続部 の電気配線がむきだしにならないよう留意し、漏電及び感電に十分注意しましょう。
- (5) 電気配線を、実験中に踏んだり引っかけたりしないよう、配線の仕方に気をつけてください。また、どのような配線になっているかが、一目で判るような配置にしておくことも大切です。
- (6) 高電圧(200V以上)を用いる際には、大地アースを必ず高電圧電源に接続してください。 高電圧配線には絶縁耐力に余裕のある同軸ケーブルを用い、その外部シールドを確実に アースしてください。高電圧は近づくだけで放電して感電するので、むき出しの配線は 天井などに設置し、絶対に近づいてはいけません。
- (7) 半田づけ作業では、作業終了時並びに中断時には、必ずコンセントを抜いておく習慣を 身につけておきましょう (スイッチが入っているのを忘れることがよくあります)。

12.1.5 水道及び火気

- (1) 水道の使用にあたっては、水量と排水溝のつまりに注意しましょう。
- (2) 火気使用中は必ず1名は在室し、火気のそばを離れてはいけません。
- (3) ガス器具は周囲に可燃物がないところで使用するとともに、換気に注意し、退室すると きには必ず室内の元栓を締めましょう。
- (4) 電気ヒータに関しては、漏電に注意するとともにヒータ温度を常時観察・制御し、安全な温度管理に留意しましょう。

12.1.6 化学物質

- (1) 化学薬品は所定の場所に保管し、その特性に従って取り扱ってください。薬品使用時にはSDS(安全データシート)を読み、事前に化学特性を理解した上で取扱いましょう。 薬品によっては換気についての注意対策が必要です。火気のあるところで引火物を取り扱ってはいけません。そこにただ置いておくのも危険です。
- (2) 劇物、毒物使用時は試薬管理簿に必要事項を記入の上、使用しましょう。また、使用時 以外は薬品庫の施錠を確実に行いましょう。
- (3) 揮発性を有する薬品(エタノール、メタノール、アセトン、トルエンなど)
 - イ) 揮発性薬品は、蒸気を伝って瞬間的に引火することがあるので火気は絶対厳禁です。 多量に使用する場合は換気を充分行い、蒸気吸入による中毒に気をつけましょう。
 - ロ) 揮発性薬品を180入りの缶から500cc瓶に移すときは建物の中で行わず、外で行いましょ

う。1 缶分の溶媒を部屋中に充満させるとほぼ爆発下限に到達します。使用時ばかりでなく保管場所(机の上など)でも火気厳禁です。

(4) 水銀

- イ) 圧力計には水銀が用いられています。水銀を扱う際は、こぼれないように充分に注意し、 万一こぼれた際は、ていねいに回収してください。
- ロ)水銀を扱った後はいかなる場合にも、生活排水につながる水道では、手・その他のものを洗ってはいけません。水銀に触れた手は容器を使って貯め洗いし、洗った後の水は16章に従って適切に処理してください。
- ハ)水銀で汚れたものはまとめて、16章に従って適切に処理してください。
- (5)「愛媛大学における排水、廃液についての手引き」をよく読み、廃液・廃油・薬品などの 廃棄を適切に行いましょう。

12.1.7 廃液・廃油・薬品等の廃棄

- (1) 写真廃液は、現像液(ミクロファイン、コレクトール、バンドールなど)、停止液、定着液と分類して専用のポリタンクに保管し、一杯になったら必要書類に記入し、16章に従って適切に処理してください。
- (2) 廃液・廃油・薬品は専用のポリタンクに保管し、16章に従って適切に処理してください。 廃液などの処理については、必ず教職員の指示を仰いでください。

12.2 工作機械

(1) 点検

工作機械はそれぞれ固有の機能を備えているので、正しい使用法と工作機械の特徴を 熟知しておきましょう。作業前には必ず点検しましょう。必要に応じて注油してください。 ベルトのたるみ具合を停止状態で確かめましょう。ベルトカバー、歯車カバーなどの有 無など、各部に異常がないか確認しましょう。

(2) 服装

- イ)必ず作業服、作業帽、保護眼鏡、保護具を着用しましょう。ボタンなどは必ずかけて、 作業中衣服が巻き込まれないようにしましょう。
- ロ) 長髪の人は必ず作業帽の中に髪の毛を入れ、髪の毛が機械に巻き込まれないようにしましょう。
- ハ) 履物は、革靴あるいは運動靴を使用しましょう。出来れば安全靴を使用してください。 スリッパ、サンダルなどは厳禁です。
- 二) 工作機械および切削作業を行なっているときは、軍手を着用してはいけません。軍手 は重量物を運搬するときにだけ着用します。

(3) 準備

重い加工物を取り付けたり、運搬したりするときには十分注意し、治具やチャックの 締め付け具合を確認します。長尺物の加工には振止めを用意するなどの注意が必要です。

(4) 作業中の注意事項

- イ) 1台の工作機械には一度に1 人だけで操作するのが原則です。グループで行うときは、 必ず互いに合図で確認してください。作業者が加工物を交換しているとき、他の者が 操作盤のボタンを押して機械を作動させたりすると、重大な人身事故が発生する危険 があります。
- ロ)作業中は絶えず音、振動、煙、熱、臭気、スパークなどに注意し、異常を発見したと きには機械を停止して担当者に相談してください。
- ハ)やむを得ず機械を離れるときにはスイッチを切り、レバーをニュートラルにしておきます(停電の場合も同様です)。
- ニ)切りくずは早めに安全に処理しましょう。この処理は常に機械を停止させ、ブラシなどを用いて行います。切りくずは、鋭利でしかも高温になっているので素手で取り扱うのは大変危険です。また、回転部分には絶対触れてはいけません。
- 本) 運転中、万一危険が生じたときは、直ちに操作盤の非常停止ボタンを押して緊急停止 させてください。
- (5) 作業の停止及び清掃

機械を停止するときは、スイッチを切り、レバーをニュートラルにしてください。工 具類の整理整頓、及び周囲の清掃を心がける事が安全に繋がる事を銘記しましょう。

12.2.1 ボール盤

- (1) 回転機械に巻き込まれる可能性があるため、必ず作業服、作業帽、保護眼鏡、保護具を着用しましょう。軍手を着用しての使用はいけません。
- (2) 回転体の半径方向には極力立ち入らないようにしましょう。
- (3) 回転しているドリルには、手を触れたり、顔を近づけたりしてはいけません。
- (4) 工作物は確実に取り付け、無理な取り付け方をしてはいけません。また取り付け、取り 外しに際しては、必ず回転を停止してから行いましょう。穴あけの後ドリルを戻すとき には工作物が振り回されやすいので注意しましょう(薄物の穴あけには木片をしき、こ れと共に穴をあけましょう)。
- (5) ドリルの取り付け、取り外しが終わったときは、チャックハンドルを必ず抜き取っておきましょう。
- (6) 切削中、切粉は素手でつかんだりせず、ブラシ、払い棒を使用しましょう。
- (7) ドリルが破損などしないように、切削条件、ドリルの切れ刃の状態と切れ味、工作物の 保持の仕方などに気をくばって作業をすすめましょう。
- (8) ドリルの大きさに見合った回転速度で使用しましょう。

12.2.2 ハンドドリル

- (1) 使用前に、きりやビットのチャックへの締め付け、スイッチ、電源コード、プラグの異常の有無を点検しておきましょう。
- (2) 大径のきりを使用するとき反力でドリルがとられ、思わぬケガをすることがあります。 特に交流式はトルクが大きいので注意しましょう。また、大きい穴は一度であけようと せず、徐々に大きくしながらあけると安全です。
- (3) センターポンチでマークせずに穴をあけようとすると、きりが滑って危険です。また、 材料に対して垂直でない穴の場合も同様です。
- (4) 穴あけ中、ドリルを無理にこじあけたり傾けたりするとドリルが折れやすいので気をつけましょう。
- (5) きりの刃のついている部分は鋭いので、不用意にさわってはいけません。また、作業直後のきりや切りくずは、高温になっているのでやけどに注意しましょう。
- (6) 貫通する直前にドリルが材料に咬んで、その結果、ハンドルが回転することがあるので特に注意が必要です。

12.2.3 旋盤

- (1) 作業服、作業帽、保護眼鏡を着用しましょう。
- (2) 回転体に手を触れてはいけません。
- (3) 素手で切り屑を扱ってはいけません。
- (4) ポケットに手を入れてはいけません。
- (5) 作業服の袖口や腰などのボタンはきちんとかけましょう。
- (6) 安全靴、又は革靴を着用しましょう。
- (7) 準備(段取り)や測定時には、主軸速度変換レバーを必ず中立位置にしておきましょう。
- (8) 心押し台は、使わないときは端に寄せて軽く締め付けておきましょう。
- (9) 機械のベッドの案内面や、刃物台の上に工具をおいてはいけません。
- (10) 加工物の取り付け、締め付けは確実に行いましょう。
- (11) 工作物の取り付けがすんだら、直ちにチャックハンドルを外しておきましょう。
- (12) チャックの真横には立たず、往復台の右寄りに立って作業しましょう。

12.2.4 フライス盤

- (1) フライスの刃物に接触してケガをしたり、切り屑で顔や目を傷つけたりすることが多い ので、作業服、作業帽、保護眼鏡を必ず着用して、安全には十分気を配りましょう。
- (2) 刃物の取り付け、取り外し時は、電源を切っておきましょう。
- (3) 加工物の取り付け、取り外しは、刃物の回転を止めてから行いましょう。
- (4) テーブル上下送り装置のハンドルは、使用後、必ず外しておきましょう
- (5) 加工中は、絶対に刃物部分へ顔を近づけてはいけません。
- (6) 切り屑が飛散する材料を切削する際は、刃物部分を囲うか、保護眼鏡をかけましょう。
- (7) 刃物に切削油をさすときは、刃物の上部からさすようにしましょう。

- (8) 万力やテーブルの上に取り付けた加工物がしっかり締め付けられているか、加工の途中でも時々確認しましょう。
- (9) 切り粉は手にささりやすいので注意しましょう。けがき線を見ようとして切り粉を指先で払ってはいけません。
- (10) 早送りは特に注意が必要です(早送りを止めても送りは動いています)。

12.2.5 研削盤

(1) 安全の心構え

研削作業は、砥石車が高速で回転しながら加工物を研削するので砥石の破壊や加工物の飛びなど、きわめて危険性が高いので十分注意して行いましょう。必ず保護眼鏡を着用して作業を行いましょう。

- (2) 研削作業は、必ず担当職員の指示のもとに作業を行ってください。
- (3) 平面研削
 - イ)マグネットチャックに加工物が完全に吸着しているか確認しましょう。
 - ロ) 停止している砥石に加工物を当ててはいけません。
 - ハ) テーブルの停止は砥石が加工物から離れた位置で行いましょう。
 - ニ) 砥石の半径方向やテーブルの送り方向の位置に立ってはいけません。

12.2.6 グラインダー

- (1) 使用前に、研削砥石と受け台との隙間を広く開け過ぎないようにしましょう。受け台の調整は砥石の回転を止めてから行いましょう。
- (2) 防塵ガラス、また防塵メガネを使用しましょう。
- (3) 平型砥石の側面は使用してはいけません(砥石は側面に弱いからです)。
- (4) 砥石の取り替えは、担当職員以外の者がしてはいけません(砥石は、ハンマーテスト、バランステスト、3分間の試運転をしてから使用しましょう)。
- (5) スイッチを入れて、十分に回転が上がってから使用しましょう。
- (6) 重い物は手持ちで作業せず、なるべく、ポータブルグラインダーを使用しましょう。
- (7) 砥石の目直し、形直しを怠らないようにしましょう (形の不規則な砥石は砕け易いからです)。
- (8) 小物、薄物を研削するときには十分に注意しましょう(材料がはねられる恐れがあります)。

12.2.7 コンタマシン

- (1) 鋸刃のゆるみ具合などを点検してから作業しましょう。
- (2) 切削中に異常があったとき(帯鋸刃の折損、刃が欠ける、刃が止まるなど)は、直ちにスイッチを切り、係員に連絡してください。
- (3) 鋸刃に注油してはいけません。
- (4) あまり小さい円弧は切削できません。材料をあまりねじらないように注意しましょう。

12.2.8 高速切断機

- (1) 切断する材料は確実に、万力に取り付け、締め付け具合を確認しましょう。
- (2) スイッチを入れてから、砥石の回転が定常になったことを確認してから切断しましょう。
- (3) 砥石が回転中に材料の取り外してはいけません。
- (4) 切断中は、回転が異常に落ちることの無いよう、無理な切り込みをしてはいけません。
- (5) 切断された材料は摩擦熱で高温になっているので、取扱いに十分注意しましょう。
- (6) 切断するとき、火花に注意し砥石の回転面の前後に立ってはいけません。
- (7) 薄く切るときは、砥石が曲がって割れやすいので注意しましょう。

12.2.9 溶接

- (1) 感電事故は、アーク溶接作業中に起こるものがほとんどで、無負荷時にホルダーの露出部、 溶接棒などに触れ、無負荷電圧により感電事故を起こすものです。したがって感電事故 を防止するために、革手袋、安全ホルダーの使用とともにアースを確実にしておきましょ う。溶接ケーブルは被覆損傷のない適正なものを使用しましょう。
- (2) 作業者は、遮光性能の良好な保護具を着用して目を保護しておきましょう。また他の作業者に対する保護対策として、溶接現場を遮光衝立又は遮光幕などで囲んでおきましょう。
- (3) 作業場の状態に適した呼吸用保護具(粉じんマスク等)を使用しましょう。
- (4) アーク光が直接皮膚に当たると、火傷の症状となります。また溶接の火花で火傷する場合もあります。従って、革手袋、前掛け、足カバーなどにより安全に保護しましょう。
- (5) ガス溶接・溶断作業を行う場合には、容器の貯蔵並びにその取扱いに注意しましょう。 また、圧力調整器、ゴムホース、吹管の取り付けを確実にし、吹管操作に注意しましょう。 作業前に各箇所のガス漏れのチェックを石鹸水で行いましょう。作業中は換気に注意し、 裏側などに燃えやすいものがないか必ず確認して作業するようにしましょう。

12.2.10 NC旋盤

- (1) レバー操作時バイトの移動速さの確認を必ず手動で行いましょう。
- (2) 手動レバー操作時バイトの移動方向を間違えないようにしましょう。
- (3) 手動レバー操作により、バイト移動後はモード切り替えレバーを必ずステップの位置にしておきましょう。
- (4) 自動運転 (マニュアル データ インプット、MDI運転を含む) 時、機械の運動の向き符 号 (+、一) の間違いがないか確認しておきましょう。
- (5) 自動運転時、移動量数値の桁数の間違いがないかを確認しましょう。
- (6) このNC旋盤は、担当職員の許可なく使用することができません。

12.2.11 マシンニングセンタ

(1) 電源を投入し、機械を運転するとき、可動部に人がいないか障害物はないかを確認しましょう。

- (2) 段取り作業をする場合は、出来るかぎり電源を切ってから行いましょう。また、回転部分に手を触れるときは、必ず回転を止めて作業しましょう。
- (3)機械可動部分は勿論のこと、機械装置の上に工具、測定具などをおいてはいけません。
- (4) 加工物や工具は常に確実にクランプしましょう。
- (5) 主軸回転中は不用意にカバーを開けたり、カバーを開けて切り屑を排出したり、加工物や工具に触れてはいけません。
- (6) 加工中、ワークに切り屑がついても主軸を回転させたままでは取り除いてはいけません。
- (7) 操作盤のスイッチボタンは、目でよく確かめてから確実に操作しましょう。
- (8) 機械運転中はマガジン内の工具に触れてはいけません。また、その他可動部にも不必要に接近したり、触れたりしてはいけません。
- (9) このマシニングセンタは、担当職員の許可なく使用することができません。

12.3 その他の機械類等

12.3.1 送風機・圧縮機・ポンプ・油空圧回路

- (1) 送風機や空気圧縮機などの運転に際しては、高速回転部(軸、ベルト、ファンなど)に 不用意に近づいて巻き込まれないように注意しましょう。また、近くで作業する場合に は運転を停止しておきましょう。
- (2) 空気圧縮機はタンクのドレン抜きを励行し、業者による定期的なメンテナンスを行いましょう。
- (3) 回路は個々の部品の定格を守って配管しましょう。管路には必ず安全弁を取り付けて異常高圧とならないよう注意し、常に圧力計を見ながら加圧、減圧を行いましょう。
- (4) 空気圧回路の配管は無圧状態で行いましょう。
- (5) 油空圧シリンダの使用に関しては、摺動部分に手を近づけてはいけません。
- (6) 停止後は減圧して、大気圧にしておきましょう。
- (7) 回転体の近くでは袖や前がひらひらした作業衣や白衣、及び軍手を使用してはいけません。
- (8) ヘルメットを着用しましょう。

12.3.2 電気炉

電気炉の使用にあたっては火災、火傷、感電への注意が必要です。特に100~500℃での使用は 炉内が赤くないので、他人に対して使用中であることを明示しておきましょう。具体的な注意す べき点を以下に示します。

- (1) 炉の周辺を整理整頓し、特に可燃物を近くに置いてはいけません。
- (2) 炉を必要以上に高温にしない。また、使用中、異常な臭いなどに注意し、最高温度付近では炉の側で監視するようにしましょう。
- (3) 炉本体や高温部に触れてはいけません。
- (4) 昇温された試験片などにさわる場合は、皮手袋や長袖シャツを着用しましょう。

12.3.3 高圧ガス

高圧ガス容器の取扱いには充分注意しましょう (第8章参照)。圧力が高く、漏洩・破損などにより、爆発、火災、中毒、ケガなどの重大災害につながる恐れがあるので、次の事項を厳守してください。

- (1) 圧力調整器、バルブなどの仕組みを理解した上で作動させましょう。
- (2) 圧力は徐々にかけることを励行し、急にかけてはいけません。
- (3) ボンベのバルブの開閉は、減圧弁を装着した後に無理な力を加えてはいけません (開閉 の方向を間違えないようにしましょう)。
- (4) 高圧力になる部分はどこであるかを絶えず注意し、破裂するとしたらどこかを前もって 考えておきましょう。
- (5) 万が一破裂しても飛散物に当たらないような工夫をしておきましょう。
- (6) 危険時にはいつでも元栓を締められるようにして実験を行いましょう。
- (7) 使用後のバルブ締めは確実に行い、ガス漏れのないことを確かめましょう。
- (8) 容器・付属機器は、月1回の自主点検を行いましょう。
- (9) 風通しが良く、直射日光が当たらない場所に立てて固定し、保管しましょう。
- (10) 酸素と可燃性ガスを1箇所に保存してはいけません。
- (11) 圧力調整器は、ガスの種類に合っているもの以外は使用してはいけません。
- (12) 運搬時には安全靴・手袋などを着用し、ボンベの横ころがしなどで衝撃を与えてはいけません。
- (13) 地震などでボンベが転倒しないよう保持を堅固にしておきましょう。

12.3.4 可燃性ガス

- (1) 可燃性ガスは支燃性ガス(酸素、空気、塩素、二酸化窒素など)と共に用いてはいけません。
- (2) 可燃性ガスを使用する場所での火気は厳禁です。
- (3) 容器内は必ずロータリーポンプなどで排気し、空気などを除去して実験を行いましょう。 実験後は窒素で置換しましょう。
- (4) 可燃性ガスの使用時には換気を十分に行いましょう。換気扇を止めて実験してはいけません。保管時にも漏れの可能性があるので換気扇は止めてはいけません。
- (5) 危険時には元栓をいつでも締められるようにして実験を行いましょう。

12.3.5 レーザ照射装置

レーザ装置はホログラフィを始めとする各種の計測器などで使用されています。レーザ光が直接目に入ると失明する可能性があるので取扱いには十分な注意が必要です(第7章参照)。

- (1) レーザ光の使用中は必ず専用のメガネを着用しましょう。
- (2) 作業領域の周囲にできるだけ遮断板あるいはカーテンを設置しておきましょう。設置不可能な場合は、作業者以外の入室を禁止し、さらに室外にレーザ使用中の警告を表示するようにしましょう。

(3) レーザ光あるいはその反射光が直接身体に当たらないようにし、設置場所や使用時間に十分配慮してください。

12.3.6 X線、マイクロ波

高電圧(10kV以上)使用時にはガイガーカウンタでX線の発生がないかチェックしながら実験しましょう(第7章参照)。マイクロ波使用時にはラジオなどで漏れをチェックし、漏れがないようにして実験を行いましょう。

12.4 実習工場の利用時の安全

研究上の必要な機器類を製作する場合、実習工場を利用することがあります。また機械工学科の学生は「機械製作実習」の授業において利用する場合もあります。いずれも工作機械を利用するにあたって、危険であることに変わりはなく、本書「12.2 工作機械」の各注意事項をよく読んでから作業に臨むことが肝要です。また、「機械製作実習」を受講する学生は授業が始まるまでに、テキストを熟読しておきましょう。

以下に、実習工場を利用する際の注意点を述べておきます。

- (1) 工作機械や治具、工具、その他の機械を利用するときは、担当職員の許可を得ると共に 説明をよく聞き、操作法を理解した上で慎重に操作しましょう。
- (2) 切り刃が摩耗又は、欠けた工具を使用してはいけません。無理して使用を続けると工作精度が悪くなるだけでなく事故発生の原因となります。
- (3) 許可を受けた機械以外は無断で使用してはいけません。
- (4) 作業終了後は、電源スイッチを切り、利用した機械及びその回りの清掃をし、終了した 旨を担当職員に知らせてください。
- (5) 一般心得や「12.2 工作機械」の注意事項を熟読しましょう。利用の直前には、該当の所をよく読んでおきましょう。
- (6) 必ず作業服、作業帽、保護眼鏡、保護具を着用しましょう。作業服のボタンなどは必ずかけて、作業中衣類が巻き込まれないようにしましょう。また、長髪の人は必ず作業帽の中に髪の毛を入れ、髪の毛が機械に巻き込まれないようにしましょう。
- (7) 履物は、革靴あるいは運動靴を使用しましょう。出来れば安全靴を使用してください。 スリッパ、サンダルなどは厳禁です。
- (8) 機械操作、切削加工時には軍手を着用してはいけません。
- (9) 実習工場内は禁煙です。

12.5 機械操作時の事故例

- (1) 旋盤作業時に、不注意により指が切りくずに触れて指を切断した。
- (2) 軍手をした状態でボール盤作業を行っていた時、左手で加工物の位置を変えようとして 軍手ごと指がドリルに巻き込まれ、指を切断した。

- (3) フライス盤作業時に、切りくずをウエスで除去しようとして、ウエスごと指が刃物に巻き込まれ指を切断した。
- (4) 高電圧が加わる機器類の電気配線をする際に、元電源を遮断しないままで行ってしまい、 アーク放電が起こり火傷を負った。
- (5) グラインダーで刃物を研削していた時、不注意により手元が狂い、指が砥石に接触し損傷した。
- (6) 旋盤作業中に、チャックハンドルをつけた状態で回転させ、ハンドルが飛び身体に接触して損傷をした。

13. 電気系での安全・衛生

13. 電気系での安全

13.1 一般的注意注意事項

実験室での電気の使用に関する基礎知識に関しては「2.4 電気器具の取扱い」を参照にしてください。ここでは実験室で実験を行うにあたって重要な、感電、漏電、電気火災、コンデンサの取扱い、高電圧、静電気などに関して安全上大切な事柄を述べます。

13.1.1 感電

感電による事故は電流による人体への生理的な影響と電気ショックにより反射的に身体を動かすことによる二次的な怪我に大別できます。ここでは前者の場合について詳細に見ていくことにします。感電の際に問題となるのは、触れた電圧よりも人体を流れる電流の大きさです。人体に対する電流の影響は、通電部位や通電時間によって大きな違いがありますが、(mA)×(秒)の値が30を越えれば人体が致命的損傷を受けるとも言われています。状況によっては家庭用の交流100Vでも死亡に至る危険があります。感電事故を起こさないためには、一般に以下の注意を守ってください。

- (1) 濡れた手で電気器具に触れてはいけません。
- (2) アース(接地)を正しく接続します。
- (3) 高電圧は、触れなくても放電によって感電する危険があります。高圧電気を通ずる配線 は容易に手に触れない構造にします。

感電は、マクロショックとミクロショックの2つに分類されます。前者は一般に感電といっているもので、電流が外皮を通して人体を貫流する場合です。後者は体内組織に直接電流が流入する場合で、体内に挿入されたカテーテルから四肢に向けて電流が流れる場合など、医用電子機器の安全などで問題となります。いずれの感電の場合にも、その影響の程度は人体中を流れる電流値と通電時間に依存します。感電は人体が直接充電部に接触することのほか、漏電によっても発生します。

マクロショックについて以下に概説します。人体は、良導体の電解質で構成された実質部をや や絶縁性を持った皮膚で包んだものです。従って、感電時に人体中に流れる電流は、ほとんど皮膚の電気抵抗に依存します。皮膚の抵抗は乾燥時には数 $10k\Omega$ 以上ありますが、水や汗で湿ると数 100Ω 以下にまで低下しますので、100Vでも100mA以上の電流が流れ、死に至ることもあります。また、高電圧では皮膚が乾燥していても、皮膚層に過大な電界が加わり絶縁破壊による導通により生命の危機に瀕します。ゴム製の絶縁靴や絶縁手袋の着用は、高い電気抵抗と絶縁性を確保するものとして有効です。

電流が体表のみを流れる場合は、火傷や激痛を受けることはあっても、直ちに感電死に至ることはあまりありません。しかし体内を流れると、神経や筋肉に重大な作用を及ぼし、死に至ります。 感電による生理作用の程度と電流値の関係は体質、体重や性別などによって異なりますが、成人 男子に対する例を表13-1及び表13-2に示します。

ミクロショックは多くの場合医用機器の設計や使用において問題となります。特徴的な点は、 桁違いに微小な電流で致命的障害をもたらすことです。動物実験では、心臓内壁に20μAの電流 が流れると心室細動が発生します。人間がミクロショックを起こさない心臓内壁流入電流の上限 値は $10 \mu A$ です。人体内の電気抵抗(約 500Ω)に対して、わずか5 mV程度の起電力でこの電流が流れます。従って室内の電灯や動力配線からの電磁誘導や、電子機器からの容量性漏電などが直接の原因となります。

感電者の離脱と電源遮断時の注意について述べます。自力離脱不能の感電者を速やかに充電部から離脱させる必要があります。しかし早く助けようと焦るあまり感電者に触れると、救助者自身も連鎖感電する恐れがあります。救助者は絶縁手袋・絶縁靴を着用したり、絶縁台に乗るなどして、大地から絶縁されていなければいけません。もし救助者が大地から絶縁されていないときには、感電者に触れる前に電源の遮断と充電部の接地をする必要があります。この場合でも、電流が大きかったりインダクタンスが大きい回路などでは、手元のスイッチを開いた時、放電が発生し、電源の遮断が困難になったり火傷などの二次災害の危険があります。したがって、電源遮断を安全確実に行うための機能を備えた遮断器をあらかじめ実験回路に設置しなければなりません。感電時の処置を適切に行うには、常日頃から実験設備・機材の配置と、動作訓練や心掛けの徹底が不可欠です。

感電事故では、感電者を充電部から離脱させ、電源を遮断します。 感電者が失神状態の場合には、 呼吸状態 (停止、困難) と脈拍状態 (有無、不整) を確認し、救急医の手配と、人工呼吸と心臓マッ サージ (2人必要) などの救護措置を行います。

人工呼吸は鼻をつまんだうえで、術者が深呼吸し、口うつしで口内に息を吹き込む、この動作をゆっくり繰り返します。心臓マッサージは、胸部を露出させ、術者が感電者にまたがり、その心臓部の上に両手掌をあてがって、術者の全体重を加えた後これを放します。以下この動作を繰り返します。

数時間にわたる人工呼吸と心臓マッサージにより、蘇生した例が多数報告されています。失神しなくても、火傷や心身への衝撃の心配がありますので、医師の診察を受けてください。軽度でも安静が必要です。感電にともない皮膚や内部組織に火傷を負うことが多く、内部組織の火傷は治癒に長期間を要します。火傷の有無により、速やかに医師の治療を受けてください。

感電事故の原因として、実験者の不注意・勘違いなどに起因する場合が少なくありません。実験者の安全意識高揚、注意事項の徹底、安全確認要点を含めた複数人での実験チームの編成、フェイルセーフシステムなどの対策が必要です。具体的な安全マニュアルを作成し、その順守に努力を払ってください。電気設備的な面から感電の原因となる主要事項を述べます。

(1) 配線材料や装置の不良

ネジが緩んだスイッチやプラグ、締め付け不良の端子、すわりの悪い機器の転置など、 配線材料や器具類の機能的欠陥・機械的不良は感電事故に結びつきます。実験回路や装 置編成時の吟味と、常時の点検が必要です。場合によっては器具や部品の交換を行います。

(2) 絶縁不良

絶縁不良は、電気の安全にとって決定的な欠陥となります。絶縁不良部に人体や持ち物が触れれば直ちに感電します。直接触れなくても、漏電の原因となり、感電や電気火災などの事故の発生につながるため、配電回路や設備に定期的な絶縁抵抗試験が課せられます。絶縁抵抗の低下は、絶縁材料の経年劣化、吸湿、絶縁表面の汚損や濡れなどによって生じます。吸湿、表面汚損や濡れの進行は、実験室の環境と密接な関係があります。

屋外や気温の急変や粉塵の激しい場所では、常時点検をして、乾燥清浄状態を維持する 手入れが必要です。

(3) 接地の不備

接地では電気回路・装置を大地に接続し、電位を大地電位(0 V)に維持します。信頼性の高い接地と絶縁は、回路・装置の正常な動作と安全に不可欠です。接地が不充分であると思わぬ場所に予想外の高電圧が現われ、機器の絶縁破壊、感電、漏電の原因にもなります。機器のケース接地は絶縁不良に対する安全対策になっており「接地端子」を接地します。漏電している機器で、接地不備のため感電事故につながる例を図13-1に示します。

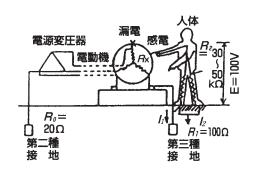


図13-1 漏電危険防止接地 (機器接地)

13.1.2 漏電

漏電とは本来流れてはならない部分に電流が漏れて流れる現象をいいます。漏電には抵抗性漏電と容量性漏電とがあります。後者は図13-2に示すように交流電圧の加わった部分と、ケースや接地線との間の漂遊静電容量を通して流れる現象で、完全な防止は不可能で、先に述べたミクロショックの原因となります。

抵抗性漏電は絶縁性能の低下や接地不備、あるいは回路の混触などが原因で発生します。絶縁物の手入れ・更新、接地や回路の整備などにより防止可能です。漏電が生じていても接地が充分であれば、漏電電流は接地線を通して大地へ流れるため、これが直ちに感電につながることはあまりありません。しかし、接地が不充分であれば、足元が接地状態にある人間が手などで漏電部分に触れると、人体を通して漏電電流が流れ重大な感電事故となりますが、絶縁性の台や履き物により大地から絶縁されていれば感電は防げます。

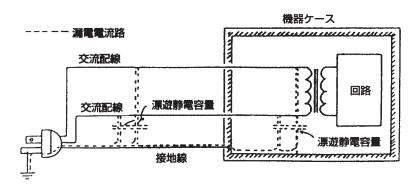


図13-2 容量性漏電

13.1.3 電気火災

電気火災の主要原因して次のことが考えられます。

- (1) 電気機器を誤って許容電力以上で使用したことによる電気機器や配線の加熱によるもので、設備の電流・電力容量の増強や冷却効果の向上によって防止されます。事故には、 直ちに主電源を切った上で対処します。
- (2) 絶縁物の損壊、汚損、老化、設備の不良や不備のため生ずる漏洩電流による過熱により生じます。絶縁物の吸湿、結露や塵挨の汚損などが複合すると発生しやすくなります。 絶縁抵抗の点検、絶縁物の乾燥と表面の清浄保持による漏電防止が基本です。また確実な接地により漏電電流を有機材料や木材などの可燃物に流さないことが必要です。事故には、直ちに主電源を切った上で対処します。
- (3) 電気接点の開閉時に発生する火花やアーク、静電気による火花は、引火性気体や可燃物 の着火を引き起こし、火災や爆発の引き金となります。引火性気体や可燃物を実験台に 持ち込んではいけません。

13.1.4 コンデンサの扱いと接地体

コンデンサは感電防止のうえで特に取扱いに注意を要します。高電圧コンデンサでは、両端子間を短絡して放電させても、端子間を開放のままにしておくと、内部の誘電体から吸収電荷が現れ、再び高電圧に復帰します。従って高電圧コンデンサは実験休止中においても、常に両端子間を接地棒(図13-3)で短絡接地する必要があります。コンデンサを含む回路に触れるときは、両端子間が確実に短絡接地状態である確認を怠ってはなりません。接地棒は図13-3のように作製します。数 $10k\Omega\sim1\,M\Omega$ の抵抗を付けるのはコンデンサの蓄積エネルギーを放出するためで、コンデンサの保護と安全上必要です。

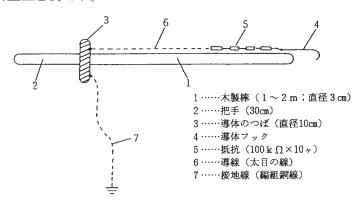


図13-3 接地棒の構造

13.1.5 露出充電部と離隔距離

実験中誤って直接充電部に触れるのを防ぐため、実験回路や装置の充電部はできるだけ絶縁 テープやカバーなどで覆い、露出させないでください。やむをえず露出充電部が存在するときは、 注意標識を付けたうえで碍子などの絶縁架台でしっかり支持し、実験中人体や他の物体が容易に 触れない構造にします。低電圧であっても、軽視は禁物です。100V、200Vでの直接接触による 感電事故は決して少なくありません。電圧が低くても電源の電力容量が大きいと、感電時の体電 流も大きくなり、重大な事故になります。

安全に実験を行うために、実験装置相互間及び実験者との間に離隔距離を確保してください。 低電圧での隔離距離は作業や実験中の転倒などのハプニングを考慮して決めることが必要です。

13.1.6 高電圧

高電圧自体は決して危険なものではありませんが、潜在的に大きな破壊力を内蔵しますので、 適切な扱いが要求されます。安全確保の要点は、接地、絶縁及び離隔距離の3つです。特に接地 棒は、高電圧実験者にとっての命綱です。高電圧に対する安全離隔距離は、強電界による回路周 辺の絶縁破壊や放電の発生、及び静電・電磁誘導の影響が考慮し決定します。2.5kVでは30cm、 50kVでは1m以上離れないと危険です。更に作業、転倒などを勘案して安全離隔距離を決めます。 安全確保のため1人だけでの実験は許されません。必ず複数人で実験チームを編成します。そ

安全確保のため1人だけでの実験は許されません。必ず複数人で実験チームを編成します。その内1人が安全確認の要員となり、チーム各員の作業状況や周囲状況を把握し、必要に応じ速やかに、適切な指示が出せる態勢を整えます。このような態勢は事故発生時に応急措置や事後処理を完全に行うために必要です。当該実験・研究室毎に安全マニュアル類を別途作成します。実験の心構え、安全のための動作や防護設備、事故時の応急措置などが示されています。これをよく読んで順守することが必要です。

13.1.7 静電気

絶縁導体や絶縁物表面に摩擦などで静電気がたまると、容易に高電位(数kV以上)が発生します。これに人体が接近すると火花放電を生じて電撃を受けます。乾燥した室内で敷物や靴などにより大地から絶縁された人間が運動すれば、人体に静電気が帯電し、接地金属に触れると同様の電撃を受けます。人体電位が1.5kV以上になるとかなり激しいショックを感じます。このショックを緩和するには、鍵など人体と一緒に帯電した金属片を手に持ち、これで接地金属に触れて放電させ、直接指先に火花放電を受けないようにします。静電気の電撃で感電死した例はありませんが、ショックで転倒したり持ち物を落としたりすることによる二次災害の誘発が多くなります。また静電気火花が混合気体の爆発を招く場合もあります。

なお静電気の電撃は、半電体デバイスの損傷や電子計算機などの誤作動の原因になることもあります。導電物質で静電気を逃がしたり、遮蔽により障害の防止を図ります。

表13-1 マクロショックと電流の関係

区	分	50~60Hz電流 〔mA〕	通電•時間	生理作	声 用	
()	0~1		感知できる限界以下		
	I	1~3	時間の長さに 関係ない	軽い刺激を受ける。	感電による直接 の生命の危険は	
2	2	3~10(15)		痛みを感じる。 離脱可能	ほとんどない。	
3	Α	10(15)~30	数分以内	筋肉のけいれん 離脱不能		
3	В	30	数分以上	血圧上昇 呼吸困難	生命の危険が	
4	Α	30~	約1分以內	呼吸停止 脈拍不整	ある。	
4	В	50 (75)	約1分以上	血圧上昇	死に至る。	
5	Α	50 (75) ~	約1秒(1脈拍) 以内	強い電撃 心室細動は起きない。		
3	В	250 (300)	約1秒以上	心室細動、失神、電流こ 電気によるまひ状態にな		
6	Α	250 (300)以上	約1秒(1脈拍) 以内 以内 脈拍位相のある区域でに 起こす。電流こん跡を生 失神、生命の危険がある		生じる。	
	В		約1秒以上	心臓停止、火傷、失神、 電流こん跡を生じる。	死に至る。	
-	7	4(5) A以上	人体の重安な部分を 通過しない場合	体の内部組織まで火傷を	受ける。	

^{*}心室細動:心筋が無秩序に収縮し、小刻みに震えて心臓がポンプとしての役目を果たさなくなり、全身に血液を送ることが出来ない状態。

表13-2 接地のある場合とない場合の感電状態の比較

	感電電流 &	章 障害比較
	100V回路	200V回路
感電状態	接地しないで、漏電電圧 100Vの 場合	接地しないで、漏電電圧 200Vの 場合
手から靴ばき足	約3mA かなりの痛み、ショック	約6mA かなりの痛み、ショック
乾いた手から手 5kΩ	約20mA けいれん、筋肉不自由収締	約40mA けいれん、危険性
濡れた手からコ ンクリート素足 3kΩ	約35mA けいれん、危険性	約70mA 致命的
濡れた手から手 又は土間素足 2 k Ω	約50mA 危険性大	約100mA 致命的

Let-go current

表13-1で判るように、電流値が10ないし15mAに達すると筋肉のけいれんが生じ、随意な運動・動作ができなくなります。充電部を握ったり触れたりした時、自力では、離脱不能に陥ってしまいます。このような状態になる限界の電流値を"Let-go current"といい、おおよそ次のような値とされています

成人男子に対する平均値 16mA (0.5%限界値は9mA) 成人女子に対する平均値 10.5mA (0.5%限界値は6mA)

13.2 事故例

事故例1

[内容] オシロスコープによる高圧測定中、オシロスコープ本体と高圧機器のケースを手で触れて感電した。

[原因] オシロスコープのグランドを機器のグランドと接続しないで、オシロスコープのプローブを3kVの高圧に接続した。グランドの接続をしなかったため、オシロスコープのケースの電位はプローブと同電位の3kVになった。高圧機器のケースとオシロスコープのケースの間に3kVの電位差が発生したため両者を両手で触れることにより感電した。

「被害」死亡

[意見] 測定前に必ず、高圧機器のケースとオシロスコープのケースはグランド線で接続を行い、 両者を同電位にすることが必要です。両手で異なる機器を同時に触る習慣はさけるべ きです。

事故例2

- [内容] 物理計測中に金属製の実験台と測定機器を両手で触れて感電した。
- [原因] 金属製の実験台にはアースがとられておらず、種々の機器が置かれていた。ほとんどの機器の電源トランスの一次側がコンデンサにより機器のケースと接続されており、そのうち1台の機器のケースが実験台と接触していた。その結果、実験台と特定の機器のケース間に電源電圧(交流100V)に近い電圧が発生した。感電は、機器の電源回路のコンデンサを通して流れた電流により生じた。
- [被害]軽い感電。ショックで持っていた工具を足の上に落とし、足のひらに軽傷をおった。
- [意見] 複数の機器を同時に使用する場合、全ての機器ケースのアースを実験台のアースに接続するべきです。それにより、機器間及び実験台間の電位差をゼロにすることができます。それが不可能な場合でも、テスターの交流電圧計で機器間の電圧(あるいはアースと機器間の電圧)を測定し、電圧が無いことを確認することが事故を未然に防ぎます。電圧が発生していれば、電源コンセントの差し込む向きを変えて、電位差が小さくなるようにします。どうしても高い電圧が発生するようであれば当該機器の電源に絶縁トランスを挿入します。信号用のケーブルを機器に接続する際にも同様な注意が必要です。

事故例3

- [内容] 1kVの電源トランス、整流器からなる電源回路の直流の高圧に触れて感電した。
- [被害] 強い衝撃的な感電によるショックを受けた。
- [原因] 実験機器の製作中のテストであり機器が、ケースに収められていなかった。不注意による感電事故である。
- [意見] 不幸中の幸いですが、高圧電気(交流の350Vあるいは直流の700Vを超える)を通ずる機器は、接地された金属ケースに収め、容易に手で触れない構造にすべきであることが法律で謳われています。

事故例4

- [内容] しばらく利用していなかった電源の入っていない高圧機器の電源回路の平滑コンデン サに触れて感電した。
- [被害] 強い衝撃的な感電によるショックを受けた。
- [原因] 自作の機器であり、電源の平滑コンデンサに、電気を逃がすための抵抗(ブリーダ抵抗) を入れ忘れていた。そのため長期(1ヶ月)前に充電され、その後放電されずにコン デンサに残っていた電圧で感電した。
- [意見] 電源回路の製作においては平滑コンデンサに放電用の抵抗を入れるのを忘れないことが重要です。また、コンデンサに触れる必要のある場合は、電圧計でコンデンサの電圧を確認するか、抵抗あるいは導体棒で電気を放電させることが必要です。

事故例5

- [内容] テスターの抵抗でトランスの導通テスト中にトランスに発生した高電圧で感電した。
- [被害] 衝撃的な感電によるショックを受けた。
- [原因] インダクタンスに流れる電流が急激に変化すれば電磁誘導による起電力が発生する。 テスターの小さい電流といえども非常に大きな電圧が瞬時に発生したことによる感電 である。
- [意見] 電磁誘導の法則を軽視しないことが大切です。

事故例6

- [内容] レーザ装置の電源の配電盤の端子が火を吹き、接続していた電源ケーブルの先端が溶けた。
- [被害] すぐに電源を切断したため。火災には至らなかったが、電源ケーブルの先端を消失した。
- [原因] 電源には約30Aの電流が流れていた。配電盤の接続端子にはケーブルの銅の導線がね じでとめられていた。接触抵抗による発熱により、導線が発熱、酸化、酸化による接 触抵抗の増加を繰り返し、一瞬にして接続部の温度が上昇した。

14. 化学系の安全・衛生

14. 化学系の安全・衛生

14.1 基本的な注意事項

愛媛大学では、愛媛大学化学物質管理指針・規程に従い、化学物質を管理することが求められており、化学物質を取り扱うためには、各研究分野毎の管理責任者(分野の長)もしくは取扱責任者(教職員)から、「化学物質の安全な取扱いと適正な管理」について、指導を受ける必要があります。実際に化学物質を取り扱う前に、十分な安全衛生教育を受け、自身や環境に悪影響を与えないよう安全に実験を実施できるように心がけて下さい。

化学系の実験室内には劇物、毒物、危険物を含む多数の薬品が保管されており、ひとたび事故が起きると重大な結果を招くこととなります。実験室の薬品、機器は共有して使用していますが、日頃より、各自実験室内を整理整頓し、安全に対する意識をもって実験を行うことが必要です。実験室には薬品だけでなく、いろいろな電気器具、機械類、高圧容器などがあり、それらの相乗作用により、事故が発生する危険性及び発生した場合の被害は大幅に増幅されます。従って、実験室又は自分の身の周りにはどんな危険が潜んでいるか、日頃から常に注意のアンテナを立てておかなければいけません。

以下に化学系実験室における注意事項を示します。

- (1) 実験室内は常に<u>整理・整頓</u>を心がけ、きちんと区分し、必要な物をいつでも簡単に取り出せる状態にしておきましょう。また、取り出し時の安全を考え、重量物は低い位置に収納し、棚などの扉の開閉も考慮した配置を考えましょう。
- (2) 実験室内の通路、緊急時の避難路を十分確保し、躓き事故などがない環境を整えましょう。 出入り口には物を置いてはいけません。万一に備えて、災害時の非常口や消火器、消火栓、 火災報知機の所在について確認しておきましょう。
- (3) 実験台上においても常に整理・整頓に心がけ、引火性溶媒を放置してはいけません。
- (4) 実験室内で飲食をしてはいけません。
- (5) 危険物などの取扱いに関する<u>留意事項を掲示</u>し、常に安全に関する意識が働くようにしておく必要があります。
- (6) 地震の発生を想定して、薬品棚やガスボンベが転倒しないように<u>固定</u>しなければいけません。
- (7) ガス漏れ、有害・有毒なガスの発生、自然発火、加熱のし過ぎや不注意による火災、漏水などには常に注意を怠らぬことです。
- (8) 薬品を購入した場合には<u>愛媛大学化学物質管理システム(14.2を参照)に登録</u>し、管理を行わなければいけません。管理システムを有効に利用することで、薬品の重複購入を避けることができ、また購入時期、保管場所などがわかり効率的に研究を行うことができます。
- (9) 各々の薬品について、危険有害性や取扱い注意事項を記した<u>SDS(Safety Data Sheet)</u> を整備しておく必要があります。
- (10) 試薬瓶を保管するときは、転倒や接触破損の防止対策として、専用のラック(仕切りがついたもの)に入れましょう。

- (11) <u>劇物や毒物は法令に基づき保管(毒物、劇物表示をした錠のかかる保管庫に保存し、鍵は教員が管理して下さい。)</u>し、取扱いは慎重に行いましょう。使用記録も忘れずに(14.2 参照)。
- (12) 反応を制御しにくいと予想される実験を行う場合には、薬品等の使用量を可能なかぎり 少量とし、衝立の使用、フルフェイス型の防具、安全エプロンの着用など、十分な安全 対策をとらなければいけません。
- (14) 実験装置と測定装置を組み込んだ場合、配線、配管は一般に複雑となります。色分け、表示するなどして一目でわかるよう工夫することで事故につながる誤作業を防ぐことができます。
- (15) 真空ポンプなど、駆動部にベルトが使用されているものは、巻き込まれないようその部分をカバーしたものを使い、ベルトがむき出しのものは使ってはいけません。
- (16) 装置から発生する異音、異臭を感じたら直ちに使用を禁止し、原因を明らかにし、適切な対応を取ることが必要です。「このくらいは大丈夫」が事故への第一歩となります。
- (17) 紫外線発生装置を使用するときは、必ず保護眼鏡を着用しましょう。
- (18) <u>1人で実験をしてはいけません</u>。特に夜間、休日では事故や火災が発生した時、救護、 消火活動、通報が手遅れになるおそれが大きいからです。
- (19) やむを得ず終夜反応させるときは、必ずドラフト中で行い、火災の発生や漏水しないように細心の注意を払いましょう。
- (20) 研究室を退出するときは、各室の電源、ガス栓、水道栓を切ったことを確認し、更に、 火気や漏水、その他の異常がないかどうか確認の上、戸締まりします。

14.2 薬品の取扱い

愛媛大学で取り扱う化学薬品は、購入の段階から、使用、保管、廃棄に至るまで、愛媛大学化 学物質管理システムに登録して管理することが必要です。

[化学物質管理システムURL]

https://chemdata.office.ehime-u.ac.jp/iasor7

化学物質管理システムのマニュアル、保管庫、ユーザの追加等については以下のURL (学内専用)をご覧ください。

https://anzeneisei.office.ehime-u.ac.jp/?page_id=870

このシステムでは、化学薬品の包装単位(缶、瓶等)一つ一つに固有の番号を持つバーコードシールを発行し、それぞれの薬品瓶に貼付することで、各薬品の購入から使用、保管、廃棄までを包装単位毎に管理するものです。特に、毒劇物、危険物、PRTR法関連物質に関しては購入や使用、廃棄の記録が必要になることがありますので、購入、使用の都度、システムに記録することを習慣づけ、化学薬品の適切な管理を行って下さい。購入・使用する化学物質の性質、危険性は、カタログや後述するSDS等を参照し熟知しておく必要がありますが、実際の法令規制情報を正確

に把握することは困難です。本システムでは、登録時に各薬品の法令規制情報をカタログから取り込むことで、各種法令の規制を受ける薬品を確実に登録することができるようになっています。また、毒物などは、使用の都度、使用者、使用量、残量(風袋込み重量で記録する)を記録する必要がありますが、使用後に本システムに使用量を登録することで、簡便に記録を残すことができるようになっています。

実際に薬品を取り扱うときには、その物質の危険性を把握することが非常に重要です。第2章に述べたように実験に用いる薬品や溶媒などの危険有害性や取扱い注意事項は各実験室に常備されているSDS(Safety Data Sheet)によって知ることができます(表14-1)。反応などに使用する溶媒や薬品の性質、どのような反応が起こるかなどを調べ、実際実験を行う際にはどのような防具類を用いるべきか、使用量をどの程度にするかなど適切に対応することが必要です。

各薬品における取扱い方法・応急処置法の情報は、薬品会社などのホームページで照会することができます。また、現在ではWeb上でも多くの化学物質のSDS(Safety Data Sheet)が参照できます。例に示した「メタノールのSDS」のように取扱い方法、危険性などの情報が確認できるので、万が一の事態に備えて、予め、自分が使用する薬品についての情報をファイルしておくとよいでしょう。

[試薬検索照会先]

http://www.j-shiyaku.or.jp/Sds/

[SDS照会先一覧]

国際化学物質安全性カード http://www.nihs.go.jp/ICSC/

[化学物質検索]

個々の化学物質の情報検索 http://www.nihs.go.jp/hse/link/webguide.html

14.3 廃液の処理

廃液は委託された廃液処理業者によって処理されます。実験廃液にはいろいろな種類の溶媒や溶液が混ざっていますので、実験廃液を捨てる際には分類された大学指定の廃液ポリタンク(角型10½)に貯留して下さい。廃液の分類、廃液回収処理連絡票、回収方法や日時、集配場所などは本編「16章 廃液排水の取り扱いについて」に従って下さい。

以下にメタノールのSDSの例(抜粋)を示します。

製品安全データシート

1. 製品名

製品名: メタノール 整理番号 (SDS No.): IW130947

2. 組成、成分情報

化学名: メタノール

別名: メチルアルコール

含有量: 99%以上 化学特性(化学式): CH₃OH

化学特性(化学式):CH3OH分子量:32.04官報公示整理番号:2-201

(化審法・安衛法)

CAS No.:67-56-1危険有害成分:メタノール

3. 危険有害性の要約

最重要危険有害性: 引火性、毒性

有害性: 眼、気道を刺激し、中枢神経系の働きを鈍くし、「めいてい」

に似た症状を現す。高濃度の蒸気を吸入、又は経口摂取すると 頭痛、吐き気、嘔吐、めまいを生じ、失明、意識喪失を起こす ことがある。皮膚からも吸収され、同様の症状が現れる。症状

が遅れて現れることがある。

環境影響: 生分解性良好な物質

物理的及び化学的危険性:引火しやすい液体で、蒸気は空気と爆発性混合ガスをつくり、

引火爆発の危険がある。火災の熱で容器が爆発する事がある。 揮発性物質で、屋内、屋外又は下水溝中で火災爆発の危険性が

ある。

分類の名称: 引火性液体、急性毒性物質

4. 応急措置

吸入した場合: 新鮮な空気の場所に移し、安静保温に努め、直ちに医師の手当

てを受ける。

皮膚に付着した場合: 多量の水で洗い流す。炎症を生じた時は医師の手当てを受ける。

目に入った場合: 直ちに多量の水で15分以上洗い流す。異常があれば医師の手当

てを受ける。

飲み込んだ場合: 多量の水又は食塩水を飲ませて吐かせ、直ちに医師の手当てを

受ける。

5. 火災時の措置

消火剤: 粉末、二酸化炭素、泡(アルコール泡)、大量の水

火災時の特定危険有害性: 火災時に刺激性もしくは有毒なガスや蒸気が発生するため、消火

作業の際には煙を吸い込まないように適切な保護具を着用する。 火元の燃焼源を断ち、消火剤を用いて消火する。移動可能な容

特定の消火方法: 火元の燃焼源を断ち、消火剤を用いて消火する。移動可能な容

器は速やかに安全な 場所に移す。移動不可能な場合には周辺

を水噴霧で冷却する。

消火を行う者の保護: 燃焼又は高温により有害なガス (一酸化炭素、ホルムアルデヒ

ド、メタノール蒸気など)が生成するので、呼吸保護具を着用

する。

6. 漏出時の措置

人体に対する注意事項: 屋内の場合、処理が終わるまで十分に換気を行う。漏出した場

所の周辺に、ロープを張るなどして関係者の以外の立ち入りを 禁止する。作業の際には適切な保護具を着用し、飛沫などが皮 膚に付着したり、ガスを吸入しないようにする。風上から作業

して、風下の人を待避させる。

環境に対する注意事項: 漏出した製品が河川などに排出され、環境への影響を起こさな

いように注意する。汚染された排水が適切に処理されずに環境

へ排出しないように注意する。

除去方法: 火気厳禁とし、漏出した液は、ウエス、雑巾又は土砂などに吸

着させて空容器に回収し、その あとを多量の水を用いて洗い

流す。

7. 取扱い及び保管上の注意

取扱い

技術的対策: 火気厳禁とし、高温物、スパークを避け、強酸化剤との接触を

さける。

注意事項: 使用後は容器を密封する。

漏れ、あふれ、飛散しないようにし、みだりに蒸気を発生させ

ない。

容器を転倒させ、落下させ、衝撃を加え、又は引きずるなどの

粗暴な扱いをしない。

安全取扱い注意事項: 吸い込んだり、目、皮膚及び衣類に触れないように、適切な保

護具を着用する。

屋内作業場における取扱い場所では局所排気装置を使用する。静電気対策を行い、作業衣、作業靴は導電性のものを用いる。

保管

適切な保管条件: 保管場所で使用する電気機器は防爆構造とし、機器類はすべて

接地する。

容器は直射日光を避け、冷暗所に貯蔵し、密閉して、空気との

接触を避ける。

過塩素酸、過酸化ナトリウム、過酸化水素、クロム酸、硝酸な

どと一緒に保管しないこと

安全な容器包装材料: ガラス

8. 暴露防止措置

設備対策: 屋内作業場での使用の場合は発生源の密閉化、又は局所排気装

置を設置する。

取扱い場所の近くに安全シャワー、手洗い・洗眼設備を設け、

その位置を明瞭に表示する。

管理濃度 作業環境評価基準: 200ppm

許容濃度

OSHA PEL: air TWA 200ppm (262mg/m3) ACGIH TLV(s): TWA 200ppm (260mg/m3)

日本産業衛生学会: 200ppm (260mg/m3)

保護具

呼吸器の保護具: 有機ガス用防毒マスク、空気呼吸器

手の保護具: 保護手袋 目の保護具: 保護眼鏡

皮膚及び身体の保護具: 保護衣、保護長靴

9. 物理的及び化学的性質

形状: 揮発性液体。 色: 無色透明 臭い: 特異臭 pH: データなし 沸点: 65℃

沸点:65℃融点:-93℃引火点:385℃

爆発限界: 6.0~35.6% (v/v) 蒸気圧: 12.3kPa (20℃) 比重: 0.793 (20/20℃)

溶解性

溶媒に対する溶解性: 水、エタノール、エーテルに混和

オクタノール/水分配係数 log Po/w: -0.82、-0.66

その他のデータ:蒸気比重:1.1 (空気=1)

10. 安定性及び反応性

安定性: 安定

反応性: 加熱すると分解して、一酸化炭素及びホルムアルデヒドを生成

する。

避けるべき条件: 日光、熱、裸火、高い温度、スパーク、静電気、その他発火源

危険有害な分解生成物: 一酸化炭素、ホルムアルデヒド

11. 有害性情報

急性毒性: 吸 入-ヒト TCLo: 300ppm

腹腔 内ーモルモット LD50:3556mg/kg

静脈 内ーラット LD50:2131mg/kg

局所効果: 眼刺激-ウサギ 40mg 中程度

皮膚刺激-ウサギ 500mg/24時間 中程度

変異原性: DNA損傷:ラット 経口 10 μ mol/ ℓ

DNA抑制:ヒトリンパ球 300mmol/ ℓ

染色体異常試験: $500 \mu \text{ mol}/\ell$

小核試験:マウスリンパ球 7900mg/ℓ OSHA、NTP、IARCにがん原性の記載無し

12. 環境影響情報

発がん性:

残留性/分解性: データなし 生体蓄積性: データなし

生態毒性

魚毒性: データなし

13. 廃棄上の注意

(1) 焼却法

焼却炉の火室へ噴霧し、焼却する。

小量の場合はおがくず、ウエスなどに吸収させて開放型の焼却炉で焼却する。

(2) 活性汚泥法

これを含む排水は活性汚泥などの処理により清浄にしてから排出する。

以下省略

薬品の多くは消防法、毒物及び劇物取締法、PRTR (化学物質排出移動量届出制度) などにより分類され、その取扱いが規定されています (表14-1)。そのような法令や規則の主旨・精神を理解して対処しなければいけません。使用にあたっては薬品が体に触れることは極力避け、必ず安全メガネや防毒マスクを着用するよう努めましょう。揮発性や飛散性のある危険有害性を取り扱うときは、局所排気装置 (ドラフトチャンバー)を使用します。

表14-1 化学物質の分類とリスト照会先

名称	一般的な性質	関係法令	物質リスト照会先			
危険物	火災・爆発を起こす 物質	消防法	https://www.fdma.go.jp/relocation/kasai_yobo/about_shiken_unpan/houbeppyou.html 指定数量について 消防法(第二章第九条の四) https://elaws.e-gov.go.jp/document?lawid=323AC1000000186			
毒物	体重1kgあたり経口致 死量30mg以下のもの (皮下注射20mg以下 静脈注射10mg以下)					
劇物	体重 1 kgあたり経口致 死量30~300mgのもの (皮下注射20~200mg 静脈注射10~100mg)	毒 物 及び 劇物取締法	https://elaws.e-gov.go.jp/document?lawid= 325AC0000000303			
特定毒物	毒物中、特に経皮毒性 の強いもの					
発ガン性 物 質	人間に対し、発ガン性 のある、もしくは、あ ると考えられる物質		http://w-chemdb.nies.go.jp/			

消防法により危険物として指定された物品は以下の6種類に分類されており、保管や貯蔵、それらの特性に見合った消火をしなければいけません(表14-2)。

表14-2 危険性物質の分類とその消火方法

分 類		特 性	消火方法	
第一類	酸化性固体	可燃物と混合され、熱などによって分解することに より極めて激しい燃焼を起こさせる危険性を有する 固体	冷却消火	
第二類	可燃性固体	火炎により着火しやすい固体又は比較的低温で引火 しやすい固体	又は 窒息消火	
第三類	自然発火性 及び 禁水性物質	空気中にさらされることにより自然に発火する危険 性を有するもの又は水と接触して発火又は可燃性ガ スを発生するもの	から込む	
第四類	引火性液体	引火性を有する液体	室息消火	
第五類	自己反応性物質	加熱分解などの自己反応により、多量の発熱又は爆 発的に反応が進行するもの	冷却消火	
第六類	酸化性液体	混在する他の可燃物の燃焼を促進する性質を有する 液体	作却相外	

次の表には化学系で比較的使われている薬品の発火・爆発性、有害危険性、貯蔵方法、消火方法をまとめています。日頃使う薬品についても自分で調べておくことが身を守ることになります。

危険物質の取り扱い方法

物質名/化学式	発火・爆発危険性	有 害 危 険 性	貯 蔵 方 法	消火方法
亜鉛 (粉末)	禁水性物質、粉塵爆発性	高温下では比較的揮発しやす	水・ハロゲン・ハロゲン化炭	砂・灰・岩粉などで被覆消
Zn		い。亜鉛の蒸気を吸入すると	化水素・アルカリと隔離	火、水使用不可
		金属熱を起こす		
亜塩素酸ナトリ	酸化性物質、強酸との混触によ	皮膚・粘膜への刺激性が強い。	可燃性物質・酸と隔離	水
ウム	り発火・爆発・チオ硫酸ナトリ	吸収するとメトヘモグロビン		
NaC1O2	ウムとの混触により爆発	血症となる		
アクリルアルデ	揮発性引火性液体、アルカリに	毒性が強い。眼・皮膚・気道	酸化性物質と隔離、重合防止剤	噴霧水、二酸化炭素、粉末、
ヒド	より激しい発熱重合、空気中	を激しく刺激	使用、火気注意、換気のよい	アルコール泡
CH ₂ =CH	長期貯蔵により過酸化物形成		耐火性冷所に保管、防爆電気	
ĊНО			機器使用	
アクリル酸	引火性液体、アルカリにより激	激しく粘膜・眼・皮膚・呼吸系	酸化性物質と隔離、重合防止剤	水噴霧、粉末、アルコール
CH ₂ =CH	しい発熱重合	を刺激	使用、火気注意、換気のよい	泡、二酸化炭素。離れた位置
CO₂H		経口 LD50 340mg/kg(ラット)	耐火性冷所に保管	から消火
アクリロニトリ	引火性液体、アルカリにより	吸入・経口摂取・皮膚接触でも	酸化性物質・アルカリと隔	粉末、アルコール泡、二酸化
ル	激しい発熱重合	吸収し急性中毒を発症する。	離、重合防止剤使用、火気注	炭素
CH ₂ =CH		皮膚・眼・粘膜の刺激性があり、	意、換気のよい耐火性冷所に	
CN		アレルギー性皮膚炎をおこすこ	保管、防爆電気機器使用	
		ともある。		
		経口 LD5082mg/kg(ラット)		
亜ジチオン酸ナ	禁水性物質、可燃性物質	刺激性、燃焼により有害な二酸	水・酸化性物質と隔離	水は多量の使用ができなけれ
トリウム		化硫黄を発生し有害		ば不可。二酸化炭素、粉末、
Na 2 SO2 • 2 H2O				乾いた砂
アセチレン	可燃性気体、爆発範囲が広い。	無毒だが酸素不足で窒息を起	酸素・塩素等酸化性物質と隔	容器冷却に水使用、噴出停止ま
CH≡CH	分解爆発性、銅・銀・ハロゲン	こす	離、火気注意、換気のよい耐火性	で消火不可。噴出が止められる
	と鋭敏な爆発性混合物形成		冷所に保管、防爆電気機器使用	なら、粉末・二酸化炭素で消火

アセトアルデ	揮発性反応性引火性液体	眼・皮膚・呼吸を刺激する。	酸化性物質・ハロゲン・アル	水、噴霧水、二酸化炭素、粉
ヒド		継続して呼吸すると麻酔作用	カリと隔離、火気注意、換気	末、アルコール泡
CH₃CHO		があり、気管支炎・肺水腫な	のよい耐火性冷所に保管、防	
		どをおこす	爆電気機器使用	
アセトン	引火性液体	毒性は比較的少ない。呼吸系・	酸化性物質と隔離、火気注	噴霧水、粉末、二酸化炭素、
(CH ₃) ₂ CO		眼・皮膚を刺激。多量吸入す	意、換気のよい耐火性冷所に	アルコール泡
		ると麻酔作用がある。	保管、防爆電気機器使用	
アルミニウム	可燃性固体、塩素化炭化水素	経口的に摂取しても毒性は低	酸化性物質・水・酸・水酸化	乾いた砂・灰・岩粉で被覆消
(粉末)	と激しく反応、酸・アルカリ	(V)	アルカリ・塩素化炭化水素と	火、爆発する危険があるか
AI	との反応により水素発生、粉		隔離、火気注意	ら、水や四塩化炭素の使用不
	塵爆発性			可
アンモニア	可燃性気体、銀・ハロゲンと	低濃度でも粘膜や眼を刺激し、	ハロゲン・酸と隔離、火気注	水で容器冷却。気体流出停止
(無水)	鋭敏な爆発性混合物形成	涙が出る。大量に吸入すると	意、換気のよい耐火性冷所に	まで消火不可。噴出が止めら
NH_3		肺水腫をおこす、液体アンモ	保管、アンモニア用防毒マス	れるなら、粉末、二酸化炭
		ニアに接触すると激しい凍傷	ク準備	素、噴霧水
硫黄	可燃性固体、粉塵爆発性	燃焼のさい二酸化硫黄を発生	酸化性物質と隔離、火気注意	噴霧水が最良の消火剤。小さ
S		して有害で、鼻・喉頭を刺激		い火災は砂で窒息させるかさ
		し、せきがひどくなり、さら		らに硫黄を加えて発生する二
		に長期間多量に吸入すると気		酸化硫黄で窒息させる。有毒
		管支炎および呼吸困難となる		ガスに注意。ホースノズルか
				らの高圧水流の使用は硫黄粉
				末が飛散するので不可
エチレン	可燃性気体、分解爆発性、塩	弱い麻酔性があって、めまい・	酸素・塩素等酸化性物質と隔離、	容器冷却に水。噴出停止まで
CH ₂ =CH ₂	素との混合物は光で爆発	頭痛・失神することがある	火気注意、換気のよい耐火性冷	消火不可。噴出を止められる
			所に保管、防爆電気機器使用	なら粉末・二酸化炭素で消火
エチレンオキシド	反応性引火性液体、蒸気は分	曝露により皮膚・粘膜を刺激	酸化性物質・酸・アルカリ・ア	液体または気体流出停止まで消
CH ₂ \	解爆発性、活性触媒により激	し中枢神経系を障害する。慢	ルカリ金属と隔離、火気・日光	火不可。容器を噴霧水にて冷却。
CH ₂	しい発熱重合	性中毒では呼吸系・神経系・	に注意、換気のよい耐火性冷	噴出を止められるなら粉末・
СП2.		血液の障害が認められる	所に保管、防爆電気機器使用	二酸化炭素で消火

物質名/化学式	発火・爆発危険性	有 害 危 険 性	貯 蔵 方 法	消火方法
塩化エチル	揮発性引火性液体	わずかに眼・皮膚・呼吸系を	酸化性物質と隔離、火気注	噴霧水、二酸化炭素、粉末
C₂H₅Cl		刺激する。吸入すると催眠・	意、換気のよい耐火性冷所に	
		麻酔作用、4%以上だと致命	保管、防爆電気機器使用	
		的貧血。液体接触で皮膚凍傷		
塩化水素	オキソハロゲン酸塩との混触	眼・呼吸系粘膜を強く刺激	オキソハロゲン塩酸・金属・	水または炭酸ナトリウム、水
HC1	により発火・爆発、金属との	し、多量曝露吸入すると肺水	アルカリと隔離、換気のよい	酸化カルシウムのようなアル
	接触により水素発生	腫となる	冷所に保管	カリ性物質
塩化ビニル	可燃性気体、空気・光・熱に	麻酔性、皮膚接触で凍傷、燃	酸化性物質と隔離、火気注	気体流出停止まで消火禁止。容
CH ₂	より発熱重合	焼により塩化水素・ホスゲン・	意、換気のよい耐火性冷所に	器を水で冷却。噴出を止められ
CHC1		一酸化炭素などを発生	保管、防爆電気機器使用	るなら粉末・二酸化炭素で消火
塩素	化学的反応性大、アンモニア	強い刺激性あり眼・粘膜・呼	可燃性物質と隔離、塩素用防	二酸化炭素、砂、クロロブロモ
$C1_2$	との混触により発火・爆発	吸系に作用する	毒マスク準備	メタンなどハロゲン化炭化水素
塩素酸カリウム	酸化性物質、強酸との混触に	皮膚・粘膜刺激性が強い。経	可燃性物質・酸と隔離	水が最良の消火剤
KC1O ₃	より発火。爆発	皮呼吸もある		
過塩素酸アン	酸化性物質、強酸との混触に	皮膚・粘膜の強い刺激作用が	可燃性物質・酸と隔離、熱・	火災の拡大防止に水使用
モニウム	より発火・爆発、熱・打撃・	ある	打撃・摩擦に注意	
NH ₄ C1O ₄	摩擦により発火・爆発			
過塩素酸カリ	酸化性物質、強酸との混触に	皮膚・粘膜に強刺激性	可燃性物質・酸と隔離	火災の拡大防止に水使用
ウム	より発火・爆発、塩素酸塩に			
KC1O ₄	より安定			
過酸化ジベン	自己反応性物質、酸化性物	皮膚・粘膜に接触すると刺激	熱・火炎・打撃・摩擦に注	できるだけ離れ、また爆発に
ゾイル	質、熱・火炎・打撃・摩擦に	作用があり結膜炎・上気道炎・	意、アミン・酸・鉄と隔離	対して保護された所から水を
$(C_6H_5COO)_2$	より爆発	皮膚炎などを発症する。接触		かける。火災後の清掃作業は
		を繰り返すとアレルギー性皮		完全に冷却してから行う
		膚炎を発症することがある		

過酸化水素	酸化性水溶液、金属や金属塩	眼・皮膚・肺に対していずれ	通気栓付き容器に保管、可燃	7K
H ₂ O ₂	により爆発的分解	も刺激性が強く、大量曝露呼	性物質・鉄・銅・クロム等分	
11202	(=3() //4/21/3/3/3/	吸により肺水腫をおこす	解触媒と隔離、顔面覆い・手	
		次(COC)加州(NE CAO C)	袋の準備	
過酸化ナトリ	酸化性物質、禁水性物質	強アルカリ性で、皮膚・粘膜	水・可燃性物質と隔離	乾燥した砂・ソーダ灰・岩粉・
ウム	(発火・爆発)	等の局所腐食作用があり、取		炭素粉末で被覆消火。水使用
Na 2O2		り扱うとき吸入を避ける		不可
過マンガン酸	酸化性物質、強酸との混触に	慢性中毒では中枢神経障害が	可燃性物質・酸と隔離	水使用
カリウム	より発火・爆発	ある		
KMnO ₄				
カリウム	禁水性物質(発火・爆発)	局所の刺激と腐食作用が強	水と隔離	乾燥した黒鉛または乾燥した
K	ナトリウムより危険性大	く、水酸化ナトリウムより強		砂をかけて消火。水使用不
		力。皮膚・粘膜と接触しては		可。大量のカリウムの火を消
		ならない		すことは困難。アルカリ金属
				火災用消火剤使用
ギ酸	引火性液体	皮膚・粘膜に対し激しい刺激	酸化性物質と隔離、火気注意	水、二酸化炭素、また粉末消
НСООН		作用あり		火剤使用
酢酸	引火性液体	接触により皮膚・眼・粘膜・	酸化性物質と隔離、火気注意	噴霧水、粉末、二酸化炭素、
CH₃CO₂H		歯に刺激的障害		アルコール泡
酢酸エチル	引火性液体	粘膜の刺激作用と麻酔作用が	酸化性物質と隔離、火気注意、	噴霧水、二酸化炭素、粉末、
CH ₃ COOC ₂ H ₅		ある	換気のよい耐火性冷所に保管	アルコール泡
酢酸メチル	揮発性引火性液体	粘膜の刺激作用と麻酔作用が	酸化性物質と隔離、火気注意、	噴霧水、アルコール泡、粉
CH₃COOCH₃		ある	換気のよい耐火性冷所に保管	末、二酸化炭素
さらし粉	酸化性物質、強酸との混触に	低濃度でも眼・粘膜・呼吸系	一可燃性物質、酸と隔離、防毒	水、とくに噴霧水
Ca (OCl) ₂	より発火・爆発	を激しく刺激する	マスクの準備	
酸化カルシウ	禁水性物質	接触および曝露により皮膚・	水と隔離	乾いた砂を使用。水使用不可
ム(生石灰)		眼・粘膜の刺激が強い		
CaO				

物質名/化学式	発火・爆発危険性	有 害 危 険 性	貯 蔵 方 法	消火方法
酸化クロム	酸化性物質、酸化性大	皮膚粘膜を刺激し、潰瘍を形	可燃性物質と隔離	水を用いる。完全に火を消し
(VI)		成する		てから貯蔵堆積物を移す
CrO₃				
三硫化四リン	禁水性物質、可燃性物質	粉塵は皮膚・粘膜を刺激する	水・酸化性物質と隔離	二酸化炭素が有効な消火剤。
P_4S_3		が毒性は弱い。しかし水と反		水も有効であるが、未燃焼物
		応して硫化水素を発生し危険		と反応して硫化水素を発生
シアン化カリ	酸や湿気により有毒性引火性	中毒はシアンによる組織呼吸	酸化性物質と隔離、火気注意	水
ウム	のシアン化水素発生	の抑制。経口 LD∞10mg/kg		
KCN		(ラット)。酸や水により有毒		
		なシアン化水素を発生		
シアン化水素	引火性液体、長期貯蔵により	青酸中毒の経過をたどる。きわめ	酸化性物質と隔離、火気注	完全防護の服装をして消火、
HCN	爆発的重合	て毒性が強く、数呼吸で意識不	意、換気のよい耐火性冷所に	粉末、二酸化炭素
		明、死亡。皮膚からも吸収さ	保管、長期貯蔵しない。防爆	
		れる。LC ₅₅ 544 ppm/15分(ラット)	電気機器使用	
ジェチルエー	揮発性引火性液体、空気中長	中毒は麻酔作用による	酸化性物質と隔離、火気・日光	水で金属容器を冷却。二酸化
テル	期貯蔵により過酸化物形成		に注意、換気のよい耐火性冷	炭素、砂、粉末、クロロプロモ
$(C_2H_5)_2O$			所に保管、防爆電気機器使用	メタン、ハロゲン化炭化水素
ジオキサン	引火性液体、空気中長期貯蔵	ヒトでは300ppm で眼・皮膚・	酸化性物質と隔離、火気注	水、アルコール泡、粉末、二
┌(CH ₂)₂ ─	により過酸化物形成	呼吸系の刺激を感じる。また	意、換気のよい耐火性冷所に	酸化炭素
o o		長期曝露により肝・腎臓を障	保管、防爆電気機器使用	
$\lfloor_{(\mathrm{CH}_2)_2} \rfloor$		害する		
1, 2 - ジクロ	引火性液体	吸入・皮膚接触・経口摂取に	酸化性物質と隔離、火気注	噴霧水、二酸化炭素、粉末、
ロエタン		より毒性あり、また眼を刺激	意、換気のよい耐火性冷所に	泡
CH ₂ C1			保管、防爆電気機器使用	
CH₂C1				

ジビニルエー	揮発性引火性液体、空気中長	エチルエーテル様の麻酔作用	酸化性物質と隔離、火気注	離れた位置から消火。粉末、
テル	期貯蔵により過酸化物形成。	がある	意、換気のよい耐火性冷所に	泡、二酸化炭素
(CH ₂ =CH) ₂ O	静電気により発火しやすい		保管、防爆電気機器使用	
臭素	反応性液体	低濃度でも気道や眼を激しく刺激	可燃性物質と隔離、顔面覆い・	水使用
Br ₂		する。40-60ppm で生命危険	防毒マスク準備	
硝酸	酸化性液体、酸化性大、オキ	他の強酸と同じく接触すると	可燃性物質・オキソハロゲン	噴霧水
HNO_3	ソハロゲン酸塩との混触によ	強い腐食とやけどをする。多	酸塩と隔離	
	り発火・爆発	量の蒸気の吸入は肺水腫をお		
		こす危険がある		
硝酸アンモニ	酸化性物質、熱・打撃・摩擦	他の硝酸塩類と同じ。大量摂	可燃性物質と隔離、熱・打撃・	水を使用。火災の初期に有
ウム	により発火・爆発	取は危険	摩擦に注意	効。大量の場合は初期をすぎ
NH_4NO_3				ると消火困難
硝酸カリウム	酸化性物質	比較的毒性は低いが、経口に	可燃性物質と隔離	硝酸ナトリウム参照
KNO₃		よる胃腸炎を発症する		
硝酸銀	酸化性物質	皮膚・粘膜の刺激と腐食作用	可燃性物質と隔離	
$AgNO_3$		がある		
硝酸ストロン	酸化性物質	ヒトで化学毒性による中毒の	可燃性物質と隔離	硝酸ナトリウム参照
チウム		報告がない		
$Sr(NO_3)_2$				
硝酸銅(Ⅱ)	酸化性物質	皮膚・粘膜の刺激性が強い。	可燃性物質と隔離	
$Cu(NO_3)_2$ •		経口 LD50940mg/kg(ラット)		
3 H ₂ O				
硝酸ナトリウ	酸化性物質	他の硝酸塩類と同じ	可燃性物質と隔離	初期火災は水で安全に処理で
Δ				きる。多量のものが炎に包ま
NaNO₃				れた場合は水の使用は危険
ショウノウ	引火性固体	比較的軽い局所刺激作用あり	酸化性物質と隔離、火気注	乾いた砂で窒息、または粉末・
$C_{10}H_{16}O$			意、換気のよい耐火性冷所に	二酸化炭素消火器を用いる。
			保管	水使用不可

物質名/化学式	発火・爆発危険性	有 害 危 険 性	貯 蔵 方 法	消火方法
水酸化ナトリ	水・酸との混触により発熱	皮膚・粘膜の刺激性が強く、	水・酸と隔離	
ウム		粉塵およびミストの吸入により上		
NaOH		気道の刺激性・腐食作用が強い		
多硫化リン	可燃性固体、摩擦により発火	火災のさいの蒸気の吸入は危	酸化性物質と隔離、火気注意	水使用
PS_x		険		
炭化カルシウム	禁水性物質、水との反応によ	水と接触しアセチレンガスを	水と隔離	乾いた砂をふりかけて消火す
(カーバイド)	りアセチレン発生	発生、酸化カルシウムとなり		る。水使用不可。発生するア
CaC ₂		さらに水酸化カルシウムにな		セチレンには該当項を参照。
		る。いずれも強アルカリ性で		
		局所刺激性が強い		
トルエン	引火性液体	高濃度曝露により麻酔作用が	酸化性物質と隔離、火気注	噴霧水、二酸化炭素、粉末、
$C_6H_5CH_3$		あり中枢神経系の抑制症状を	意、換気のよい耐火性冷所に	泡
		おこす	保管、防爆電気機器使用	
ナトリウム	禁水性物質(発火・爆発)	接触部のタンパク質の溶解に	飽和炭化水素中保管、水と隔	乾燥した多量の黒鉛、砂、ひ
Na		よる刺激作用と腐食作用を認	離	る石粉などでおおって消火。
		める		水使用不可。多量のナトリウ
				ムの消火は困難でアルカリ金
				属火災用消火剤使用
ナフタレン	引火性固体	皮膚の刺激作用があり、炎症	酸化性物質と隔離、火気注意	水、二酸化炭素、泡、粉末、融解
$C_{10}H_{8}$		をおこすことがある。経口		したナフタレンに水または泡
		LD ₅₀ 1780mg/kg(ラット)		をかけると泡立ちを起こす
ニトロアニリン	可燃性固体	皮膚接触・吸入で危険	酸化性物質と隔離、火気注意	噴霧水、二酸化炭素、粉末、
C ₆ H ₄ (NO ₂)NH ₂				泡
ニトロクロロ	揮発性可燃性固体	吸入・のみこみで危険。蓄積	酸化性物質と隔離、火気注意	噴霧水、二酸化炭素、粉末、
ベンゼン		毒		 泡
C ₆ H ₄ (NO ₂)Cl				

→r*//.□=	ENTRY MITTING METERS AND ASSESSMENT OF THE PROPERTY OF THE PRO	211 - Norm t AM 1 to		rk → TA //. 山主 - アば M. バラ
二硫化炭素	揮発性引火液体、発火しやす	主としてガス吸入、急性中毒の	水中保管、酸化性物質と隔	砂、二酸化炭素、不活性ガス
CS_2	(V)	重症例では興奮性の初期症状に	離、火気・日光に注意、換気	
		続いて意識喪失、昏睡とな	のよい耐火性冷所に保管、防	る
		る。皮膚からもわずかに吸収	爆電気機器使用	
ピクリン酸	爆発性物質、銅・鉛・亜鉛等	皮膚・眼・粘膜を刺激	熱・火災・打撃・摩擦に注	爆発性なので、消火作業を考
$C_6H_2(NO_2)_3OH$	の金属と鋭敏な爆発性の塩を	経皮吸収あり	意、銅・鉛・亜鉛等の金属と	えてはならぬ。安全な位置か
	形成		隔離	ら容器冷却
フェノール	可燃性固体	皮膚接触により強い刺激性あ	酸化性物質と隔離、火気注意	噴霧水、二酸化炭素、粉末
C ₆ H ₅ OH		り壊死に至る。吸入により危		
		険。経口 LD50414mg/kg(ラッ		
		ト) 300mg/kg (マウス)		
ブタジエン	可燃性気体、空気、光・熱に	吸入で有害。酸素不足による	酸素・塩素等酸化性物質と隔	気体の流出停止まで消火不
C_4H_6	より発熱重合	- 窒息作用	離、火気注意、換気のよい耐	可。容器冷却のための噴霧注
			火性冷所に保管、防爆電気機	水。噴出を止められるなら粉
			器使用	末・二酸化炭素消火
ブタン	可燃性圧縮気体	無毒だが酸素欠乏による窒息を	酸化性物質と隔離、火気注	気体の流出停止まで消火不可、
C_4H_{10}		起こす。液体は蒸発による冷	意、換気のよい耐火性冷所に	容器の冷却注水、噴出を止めら
		却・凍結による凍傷を起こす	保管、防爆電気機器使用	れるなら粉末・二酸化炭素消火
フッ化水素	オキソハロゲン酸塩との混触	皮膚・粘膜に極めて強い刺激	アルカリと隔離、換気のよい	水使用
HF	により発火・爆発、金属との	と腐食作用がある。吸入によ	 冷所に保管	
	接触により水素発生	り肺水腫となる		
フッ素	化学的反応性極めて大、酸化	極めて反応性が強く、皮膚・	可燃性物質等フッ素との反応	流出が停止するか、なくなる
F_2	し得る物質との反応により発	眼・粘膜(とくに呼吸系粘膜)	性物質と隔離	まで容器を噴霧水で冷却
* 5	火、水との反応によりフッ化	をつよく腐食する	ET 1937 CHINDE	3. 1 HH C 2007/1. C 19-51
	水素と酸素発生、硝酸との反			
	応により爆発性硝酸フッ素発			
	生			

物質名/化学式	発火・爆発危険性	有 害 危 険 性	貯 蔵 方 法	消火方法
ベンゼン	引火性液体	高濃度曝露で麻酔作用があり	酸化性物質と隔離、火気注	噴霧水、二酸化炭素、粉末ま
C_6H_6		致死的。低濃度蒸気をくりか	意、換気のよい耐火性冷所に	たは泡消火
		えし吸入すると致命的貧血	保管、防爆電気機器使用	
マグネシウム	禁水性物質、粉塵爆発性	眼、粘膜の刺激症状あり。経口	水・酸化性物質・ハロゲン・	乾燥黒鉛や砂を過剰にかけて
Mg		LD ₅₀ 2800mg/kg(ラット)	ハロゲン化炭化水素・アルカ	消火、または金属火災用消火
			リと隔離	剤。水、四塩化炭素、二酸化
				炭素使用不可。飛散した粒子
				が爆発する危険があるので安
				全な距離から消火
無水酢酸	引火性液体	眼・皮膚を激しく刺激、皮膚	酸化性物質と隔離、火気注	噴霧水、二酸化炭素、粉末、
(CH ₃ CO) ₂ O		の感化作用がある。経口 LD50	意、換気のよい耐火性冷所に	アルコール泡
		1780mg/kg (ラット)	保管	
メチルアミン類	可燃性気体、水銀と爆発的反	皮膚・眼、粘膜に強い刺激作	酸化性物質と隔離、火気注	気体の流出停止まで消火不
CH ₃ NH ₂	応	用がある。高濃度曝露で肺水	意、換気のよい耐火性冷所に	可。水で容器冷却。噴出を止
(CH₃)₂NH		腫となる	保管、防爆電気機器使用	められるなら粉末、二酸化炭
(CH₃)₃N				素、水溶液は噴霧水、二酸化
				炭素、粉末、アルコール泡
硫化アンチモン	可燃性固体、易着火性、無機	高濃度曝露で眼・粘膜刺激症	酸化性物質・酸と隔離、火気	水使用
(V)	酸との反応により硫化水素発	状と金属様の味覚がある	注意	
Sb ₂ S ₅	生			
硫化水素	可燃性気体、発煙硝酸、濃硝	シアン化水素と同様の毒性が	酸化性物質と隔離、火気・日	噴霧水、アルコール泡、粉末、
H ₂ S	酸等の強力酸化性物質と激し	ある。局所刺激障害、呼吸困	光注意、換気のよい耐火性冷	二酸化炭素。きわめて有害なの
	く反応	難	所に保管、防爆電気機器使用	で、むしろ消火しない方がよい
硫化ナトリウム	可燃性固体	水溶液は強アルカリ性で皮膚・	酸化性物質・酸と隔離、火気	水
Na ₂ S		粘膜に刺激性・腐食作用がある	注意	

硫酸	オキソハロゲン酸塩との混触	接触部の刺激性・腐食性あ	オキソハロゲン酸塩・可燃性	砂、灰、岩粉で窒息消火。水
H_2SO_4	により発火・爆発、金属との	り、皮膚・粘膜組織の水分と	物質・アルカリと隔離	は使用しないが、ごく少量の
	接触により水素発生、可燃性	反応して化学性火傷となる		硫酸になら大量の水を使用し
	物質との混触により発火			てよいことがある
リン (黄)	自然発火性物質	毒性が強い。燃焼時に毒性の高	水中保管、化学薬品と隔離	火が消え、リンが固化するま
P		い蒸気を発生。リンが皮膚に		で大量の水をかける。ついで
		つくと激しい化学火傷となる		湿った砂または泥でおおう
リン (赤)	可燃性固体、酸化性物質との	黄リンより毒性は極めて弱い	酸化性物質と隔離、火気注意	大量の水で消火。火が消えたと
P	混合物は爆発性	が燃焼すると有害の蒸気を出		き湿った砂または泥でおおう。
		す		高温のある条件の下で黄リンに
				変わる。黄リンより消火は容易

14.4 ドラフトチャンバー

ドラフトチャンバーは、有害物から実験者を守る事を目的とした局所排気装置です。危険物質や有害物質の封じ込め機能と排気機能を有しており、開口部には開口面積を調整する事が出来る垂直あるいは水平に移動するサッシを備え、背面及び上部にある排気部を通して均一な気流が得られるようになっています。一般的な安全上の基準として、面風速0.5m/secが推奨されています。また、全面開口の周囲は乱流や逆流が生じやすいので、開口部周囲のスムースな気流の確保が必要です。開口部を全開とするのは装置などの組み立て時に限定し、実験中は、前面扉を半開以下で使用するよう心がけることが大切です。

14.5 薬品類による事故例

事故例1

- [内容] 強酸が天井まで吹き上がり、数人の頭や顔に酸がかかった。
- [原因] 薬品取扱いの操作手順を間違った。ドラフト内で取り扱わなかった。安全メガネを着 用していなかった。
- 「処置」大量の水道水で患部を水洗いした。
- 「被害」外傷はほとんど認められなかった。
- [意見] 薬品の危険性やその取扱いについて熟知し、安全メガネやドラフト内で操作すべきです。 危機感のない身勝手な実験操作は本人だけでなく周りにも悪影響を与えます。

事故例2

- [内容] 有機スズ化合物の飛沫が目に入ったかもしれない。
- [原因] 眼鏡の着用を怠った。
- 「処置」眼の水・目薬による洗浄後、指導教員が眼科医まで搬送、受診した。
- 「意見」保護眼鏡の着用を徹底しましょう。

事故例3

- [内容] Pt-TiO₂触媒の粉がゴミ箱に落ちていて、その上にメタノールが付着したキムワイプを 捨てたら燃え上がった。
- [原因] 可燃物用のゴミ箱に不適当なものを捨てた。
- [処置] 消火器により消火した。
- 「意見」触媒の粉は所定の回収容器に入れましょう。ゴミ箱は金属製が望ましいでしょう。

14.6 ガラス器具の取扱い

実験室内で起こる最も多い事故は、ガラス器具を扱うときです。ガラスは加工しやすく、安価であることから多くの化学系実験室で多用されています。その反面、ガラスは機械的、熱的ショックに弱く、その強度は金属器具などと比べて低いため、指先の力でも破損する場合があります。さらに、破損したガラスの断面は非常に鋭利ですので、非常に深い裂傷を負うことがあります。ガラス器具を取り扱う際はできるだけ無理な力を加えないよう注意する必要があります。

- (1) 試験管、ビーカー、三角フラスコなどをクレンザーで洗う場合、まず器具の大きさ、形状に合わせて適当なブラシを選ぶべきです。器具の奥行き(深さ)に合わせてできるだけ短くブラシを持ち、底面や壁面に接触させたまま、面に沿ってこするように静かに動かします。試験管の底の場合にはブラシを回転させます。こうすれば多少力を入れても破損することはありません。ブラシを長く持ち、壁面に向かって急速に上下(前後)させれば、突き破ってしまいます。
- (2) 洗浄の十分なガラス器具は逆さにするだけで水が切れてしまいますが、洗浄が不十分であると水滴となって残ります。このような場合、器具を振って振り落とそうとする姿をよく見かけます。これは器具の破損につながるだけでなく、習慣になると、器具に付着した水分や残留溶液を除くつもりで振り回す癖がついてしまいます。このような行為は自身のみならず他人にも災害を及ぼす元になりますので、止めるべきです。
- (3) ガラス棒は溶液のかきまぜや薬品の取り出しによく用いられますが、折れやすくて大ケガの元になりますので、固形物を突き崩すのには使用しない方がよいでしょう。また温度計をかきまぜ棒代わりにしがちですが、これは先が折れやすく、その折れ口は鋭くなっています。しかも内容物が水銀であれば後の処理も面倒ですのでこのような使用は絶対にしてはいけません。
- (4) ゴム栓に開けた穴にガラス管を差し込むときは、ガラスが折れて手に突き刺さる事故が 起こりやすいので慎重に行います。ゴム栓を握りこむようにして持ち、先端に水やアル コールをぬったガラス管をできるだけ短く持ち、回転させるようにして静かに少しずつ 差し込みます(下図参照)。ガラス管を長く持って力を入れて押し込むと、ガラス管はす ぐ折れてしまいます。ガラス管の先端は予め焼き、丸めておきます。

- (5) ガラス器具はていねいに取り扱わなければいけません。試験管や小型ビーカーは片手で持ってもいいですが、大型ビーカーなどは両手で持たなければいけません。口のところを片手で持つようなことは絶対に避けるべきです。デシケーターを持つときは蓋の転落に注意をします。
- (6) ガラス器具を破損した場合にはすぐに掃除して破片を集め、ガラス専用の屑篭に捨てましょう。
- (7) ガラスは相当高温に熱せられても一見冷たそうに見えますから、やけどなどしないよう 気をつけなければいけません。
- (8) ガラス細工の際には、紫外線をカットする保護メガネを着用します。また、細工に用いるヤスリ、ガラス切りはよく切れるものを使います。細いガラス管の場合、ヤスリで鋭

く小さな傷をつけ、唾液か水を一滴つけ引っ張るようにして折るようにします(下図参照)。ヤスリが切れないと必要以上の力を入れることとなり、ガラスが破損し、非常に深い裂傷を負うことになります。

14.7 ガラス器具による事故例

事故例1

[内容] 水道水でガラス器具を洗浄中に指先を切った。

[原因] 洗浄しながら他の人と話したり、他の事を考えたりしていた。

「処置」しばらく指で止血した後、消毒してバンドエイドで傷口を保護した。

「被害」人差し指の第二関節付近を2cmほど切った。ガラス器具が破損した。

[意見] ガラス器具の洗浄はその形状や強度に注意しながら意識を集中して取扱いましょう。

事故例2

「内容」ゴム管にガラス管を挿入する際、ガラス管が割れ、手を切った。

[原因] 挿入方法が悪かった。素手であった。

[処置] 保健管理センターで応急手当て後、病院で処置した。

「被害」3cmの裂傷、2針縫合した。

[意見] 保護手袋を着用しましょう。挿入箇所を短く持ち、通りにくいときはグリースか水を 塗るようにしましょう。

事故例3

[内容] ガラス管にヤスリで傷をつけ、引っ張って切断する際、別な部分のガラス管が折れ、 左手に裂傷を負った。

「原因」ヤスリの傷が浅かった。

[処置] 保健管理センターで応急処置後、病院で処置した。

[意見] ヤスリをよく研ぎ、ガラスに深くて鋭い傷をつけ、キズの近くを持って引っ張りましょう。

14.8 電気を安全に使用するために

ほとんどの電気製品は、間違った取扱いをしない限り安全に作動するように設計されています。 しかし実験室では、一般家庭と異なり、使用する電気装置の種類や数も多く、機器にとって厳し い条件下で使用することが多いです。さらに、室内の電気配線、種々の電気装置の製作、修理な どを自分で行うことが必要になる場合もあります。そうした作業に従事する場合には、電気に関 する基礎知識を持ち合わせていることはもちろん、電気使用のルールを正しく理解しておくこと が必須です。電気系の安全・衛生を読み、理解したうえで作業をすることが必要です。

14.9 電動機器の取扱い

グラインダー、ボール盤、自動丸のこ盤などの工作機器は、部品及び工作物を完全に固定した後、回転方向を確認し、防護板のセット、保護眼鏡の着用などで十分に安全を確認した上でコンセントを入れ、もう一度安全を確認してから電源をいれます。回転体に巻き込まれるおそれのあるような衣服を着用してはいけません。極端に大きいものや小さいもの、或いは極端に硬いものや軟らかいものを加工してはいけません。また、常に整理整頓を心掛けましょう。第12章の機械系の安全・衛生を読み、理解したうえで作業をすることが必要です。

14.10 事故が発生した時の措置

実験にあたって事故を起こさないように心がけることは大切ですが、不幸にして事故が発生したら、まず第一に人命の安全と人的被害を最小にすることを心がけ、第二に被害が広がるのを防止する措置を講ずるべきです。ここでは化学の実験で頻度の高い事故について、応急的な措置を記しますが、事故の際はこれらの措置と並行して、できるだけ急いで指導者を呼んで指示を仰ぐことです。(第5章 参照)

- (1) 酸、アルカリなどの劇物や有毒物が床、実験台などにこぼれた時は、禁水性のもの(Na、K、CaC2、Ca3P2、CaO、NaNH2、LiAlH4など)を除き、一般にはまず大量の水で流します。ただし、漏電を起こす場合もありますので、適当に希釈した後中和して拭き取ります。中和熱が大きくて被害を拡大することがある酸の場合には、中和剤として希アンモニア水、1~2%炭酸水素ナトリウム(重曹)、水酸化カルシウム(消石灰)、炭酸カルシウムなどが用いられます。アルカリの場合には希酢酸で中和します。
- (2) 酸、アルカリなどの劇物や有毒物が皮膚に付いた時は、汚染した部位を大量の水で洗います。衣服が汚染していたら、速やかに脱がせます。衣服を脱がせるときに、劇薬を浴びてただれた皮膚をこする恐れのある場合は、衣服を手早くハサミで切り取ります。汚染が全身に及ぶときは、実験室又は近くのトイレ内に備えられている緊急用シャワーを利用して洗います。
- (3) 硫酸、硝酸、水酸化ナトリウムなどの腐食性物質が目に入った時は穏やかな流水で15分くらい休まずに洗います。目はアルカリに対して弱いので特に注意することです。
- (4) 劇物や有毒物が口に入った時は、うがいを繰り返します。飲み込んでしまったら吐かせるのがよいのですが、無理をしてはいけません。卵白、牛乳を与えて粘膜を保護するのもよいですが、出来るだけ速やかに医師の診断を受けるようにするのが第一です。
- (5) ガラスなどでケガをした時は、まず水道水でよく洗います。手が薬品で汚れていることが多く、傷口からその薬品が皮膚の奥深く浸透する恐れがあるからです。その後止血をして、出来るだけ速やかに医師の手当てを受けることが大切です。
- (6) やけどをした時は、冷水につけて十分時間をかけて冷やします。
- (7) 有機溶媒に火がついても容器が割れない限り、それほど大きな事故にはなりません。まわりにある可燃物を除き、ガスなどの熱源を止めて火勢が弱まるのを待って濡れ雑巾などで容器の口を覆えば消火できます。消火器はいつでも使えるように用意するべきです

が上記方法で消火可能ですので、他に燃え移る危険のない場合は無闇に使用しない方がよいでしょう。

- (8) 溶剤を浴びて引火したり、衣服に着火したりした場合、驚いて走り回るとかえって火力を強くして惨事に至ることになります。すぐ床の上に転がるのがよい方法です。手や足についた場合も実験衣などでたたくのが有効です。あるいは実験室内の緊急用シャワーを利用します。
- (9) 有毒、刺激性気体を吸い込んだ場合、窓を開け放つと同時に、至急被害者を新鮮な空気中に移し応急措置をとります。

14.11 GHS

GHSとは

「化学品の分類および表示に関する世界調和システム(Globally Harmonized System of Classification and Labeling of Chemicals)」(略してGHS)は、製剤の危険有害性に関して世界共通の分類と表示を行い、正確な情報伝達を実現し、取扱者が製剤によって起こりうる影響を考慮して必要な対策を可能とすることを目的として、2003年7月に国連より勧告されたものです。

GHSラベル ~それぞれの絵表示の意味と事故の予防策~

	,		,
シンボル	名 称	概 要	事故の予防
	爆弾の爆発	火薬類、自己反応性化学品、 有機過酸化物	熱、火花、裸火、高温のような着火源から遠ざけること。禁煙。保護手袋、保護 衣および保護眼鏡等を着用すること。
	炎	可燃性・引火性ガス、可燃性・ 引火性エアゾール、引火性 液体、可燃性固体、自己反 応性化学品、自然発火性液 体、自然発火性固体、自己 発熱性化学品、水反応可燃 性化学品、有機過酸化物	熱、火花、裸火、高温のような着火源から遠ざけること。禁煙。空気に接触させないこと。(自然発火性物質) 保護手袋、保護衣および保護眼鏡等を着用すること。
	円上の炎	支燃性・酸化性ガス、酸化性液体、酸化性固体	熱から遠ざけること。衣類 および他の可燃物から遠ざ けること。保護手袋、保護 衣および保護眼鏡等を着用 すること。

シンボル	名 称	概 要	事故の予防
	ガスボンベ	高圧ガス	換気の良い場所で保管する こと。保護手袋、保護衣お よび保護眼鏡等を着用する こと。
	どくろ	急性毒性(区分 1-3)	この製品を使用する時に、飲食または喫煙をしないこと。取扱い後はよく手を洗うこと。眼、皮膚、または衣類に付けないこと。保護手袋、保護衣および保護眼鏡等を着用すること。
	腐食性	金属腐食性物質、皮膚腐食性・刺激性(区分1A-C)、 眼に対する重篤な損傷・眼刺激性(区分1) ※太字は物理化学的危険性	他の容器に移し替えないこと。(金属腐食性物質) 粉じんまたはミストを吸入しないこと。取扱い後はよく手を洗うこと。保護手袋、保護衣および保護眼鏡等を着用すること。
	健康有害性	呼吸器感作性、生殖細胞変 異原性、発がん性、生殖毒性、 特定標的臓器・全身毒性(単 回ばく露)(区分1-2)特 定標的臓器・全身毒性(反 復ばく露)吸引性呼吸器有 害性	この製品を使用する時に、飲食や喫煙をしないこと。取扱い後はよく手を洗うこと。粉じん/煙/ガス/ミスト/蒸気/スプレーなどを吸入しないこと。推奨された個人用保護具を着用すること。
***	環境	水性環境有害性	環境への放出を避けること。
<u>(!)</u>	感 嘆 符	急性毒性(区分4)、皮膚腐食性・刺激性(区分2)眼に対する重篤な損傷・眼刺激性(区分2A)、皮膚感作性、特定標的臓器・全身毒性(単回ばく露)(区分3)	どのような危険有害性があるか確認して、ラベルに記載された注意書きに沿った 取扱いが必要です。

15. 生物化学の安全・衛生

15. 生物化学の安全・衛生

応用生物化学で行う実験では、爆発や火災がおこる危険性は、ほとんどありません。全国的には、 感電事故の事例が報告されていますが、近年は死亡事故につながるほどの高電圧装置を使うこと は少なくなっています。しかしながら、細胞毒性、発癌性、神経毒性をもつ物質を使用すること もあり、目、口、皮膚に接触しないように気をつけ、これらを取り扱うには細心の注意が必要です。

15.1 一般的心構え

基本的には一般の化学実験と同じ心構えが必要ですが、生化学の実験では、実験者の安全性の確保以外の点にも注意を払う必要があります。例えば、不安定な物質、貴重な試料、高価な試薬を扱ったり、極微量の試料を扱うことが一般的です。また、生物材料を扱う場合は環境汚染や感染拡大などにも注意を払う必要があります。従って、実験の手法や原理をよく理解した上で、集中力をもって実験してください。

15.2 試薬

ほとんどの試薬の取扱いについては、一般的な化学実験での留意事項に準じますが、分子生物学関連の試薬は、非常に高価な上、保存温度が指定されているものが多くあります。試薬を保存する場合、保存温度に注意してください。冷蔵(4°C)が指示されている試薬を冷凍庫(-30、-80、-150°C)に保存してはいけません。また、試薬を出しっ放しにしないよう十分注意してください。とくに制限酵素などが一括管理されているボックスを冷凍庫からとりだすことは避けてください。

研究室でよく使用されている試薬で特に注意するものを以下に列挙します。

- (1) 臭化エチジウム、アクリルアミドモノマーなど発癌性や神経毒性のある試薬の使用には注意してください。
- (2) クロロフォルム、フェノール、エタノール、メタノールなどの有機溶媒は換気に留意し、 火気のそばで使ってはいけません。とくにフェノールは強いタンパク質変性作用がある ので、保護めがねの着用など安全に配慮してください。
- (3) 塩化セシウム、過硫酸アンモニウムなど吸湿性の高い試薬は、乾燥剤入りの保存庫にあります。秤量時の開封はすばやく行ってください。
- (4) バクトトリプトン、バクトペプトンなどの培地、ラウリル硫酸ナトリウム (SDS) など 粉末がとびやすい化合物を大量に使用する場合は、マスクなどの保護具を着用してください。

15.3 機器等の取扱いについて

応用生物化学実験で頻繁に用いられる機器の取扱いについて示します。

15.3.1 遠心機

- (1) 遠心分離機(遠心機)は、試料のはいったボトルをローターにセットして高速で回転させる装置です。ローターの軸を中心とした重量バランスが取れていないと、高速回転中に遠心機本体を傷めることがあります。過去には、軸が折れ、高速回転したローターが装置から飛び出して実験者が死亡するという事故も起きています。最近の機種では、バランスが取れていない場合に自動的に加速を止めたり、規格外の回転数にセットした場合に運転できなくしたりする安全装置がついていますが、旧式や簡易式の遠心装置には安全装置が付いていないものもあります。バランスには十分注意してください。
- (2) ローターには寿命があります。使用の際にはひびが無いか確認し、ひびがある場合はそのローターは使わないようにしてください。床に落としたり、堅いものに強く打ち付けたりしないように十分注意しましょう。遠心機の傍らに帳簿を置いて、ローターの使用時間を記帳するのが望ましいでしょう。
- (3) 超遠心機のローターには、アングルローター以外にスイングローターがあります。スイングローターでは、バケットの接続を確認してから遠心操作を行ってください。
- (4) 超遠心機の場合は、遠心管からの試料もれに注意してください。減圧時に試料もれがあると、アンバランスの原因になり、遠心管の破損につながります。
- (5) 臭化エチジウムを使用した塩化セシウム密度勾配超遠心では、試料もれは発癌性物質を遠心機内に飛散させることになります。

15.3.2 電気泳動

- (1) 高圧電源の取扱いには、十分注意して、とくに泳動装置の緩衝液もれによる漏電には気を付けてください。高圧電流による電気泳動を行う場合は、感電・漏電に厳重に注意してください。また、通常のゲル以外(ろ紙やセパラックスフイルム)で電気泳動を行う場合は、出火の原因になりうるので、通電中は、電気泳動装置から離れないでください。
- (2) アクリルアミド・モノマーは神経毒です。もし、アクリルアミドゲルを固める場合は、アクリルアミド・モノマーの取扱いには注意してください。
- (3) 臭化エチジウムは発癌性物質です。ゲルを染色する場合は、かならず手袋をしてください。
- (4) 電気泳動試料の作成などで、ガスこんろを使用する場合は、常にそばにいてください。

15.3.3 紫外線発生装置(電気泳動ゲル撮影装置など)

(1) 裸眼で、紫外線光源を直視すると失明する危険があります。紫外線カット機能のある保護めがねなどを使用してください。現在、使用している電気泳動ゲル撮影装置は、装置のアクリルカバーによって紫外線がカットされる仕組みになっています。カバーをはずした状態で使用することは避けてください。

(2) クリーンベンチの紫外線殺菌灯を、フード開放下で直視することは避けてください。クリーンベンチのフードガラスには、紫外線カット機能があります。

15.3.4 乾熱滅菌装置、オートクレーブ、電子レンジ

- (1) やけどに注意し、軍手を着用してください。オートクレーブ、電子レンジの内部からものを取り出す際などには、熱湯が軍手に滲み込まないように、さらに上から手袋を着けるなど工夫してください。
- (2) プラスチック製品を乾燥させる場合は、その耐熱性に気をつかってください。
- (3) オートクレーブを運転する前に、次のことを必ず確認してください。
 - イ) 内部の鉄板が浸る位置まで水がはいっていること
 - ロ) 缶体(ドラム) にひびが無いこと
 - ハ)外部のボトルに指定された範囲の水の量がはいっていること
 - 二) 外部のボトルに浸っているホースが折れていないこと 市販のオートクレーブには空焚き防止装置がついていますが、水が十分入っていない まま運転すると、不完全な滅菌や故障の原因になります。また、ドラムにひびが入って いる場合は実験指導者に連絡し、その装置は絶対に使わないでください。
- (4) オートクレーブのふたを高圧下で開けることは絶対にしないでください。多くの装置では、 運転中にロックがかかるようにはなっていません。もし開けると、やけどのおそれがあ るほか、滅菌中の耐圧瓶などが突沸により破損する可能性があります。また、排水コッ クも高圧の状態では絶対に開けてはいけません。これも多くの装置ではロックされませ ん。もし開けると、熱湯が噴出して大変危険です。

15.3.5 ドライアイス、液体窒素の取扱い

低温やけどに注意してください。ドライアイスを使用するときは軍手を着用してください。液 体窒素を取り扱うときの注意事項は第9章に記載されています。特に、低温室内で液体窒素を使 用する場合には換気に十分注意してください。

15.3.6 放射性同位元素(ラジオアイソトープ、RI)

RIを用いる実験は、安全管理教育講習会と健康診断を受け、放射性同位元素取扱主任者から許可された者が、特定の管理区域(RI専用の実験室)でのみ行えます。詳細は実験指導者とよく相談し、安全に実験を行えるよう心がけてください。

15.4 生物材料の取扱いについて

生物材料を扱う場合は、実験材料自身が生き物であったり、ヒト由来であったりする場合があります。このため、実験で扱う生物が野外に拡散することを防ぎ、感染事故を避けるために特別の手段を講じる必要があります。

実験を行うためには、特別の許可・認可が必要な場合が多いです。とくに、ヒト由来の実験材

料(遺伝子を含みます)を扱う場合には、同意書や許可が必要です。

15.4.1 微生物実験の安全

- (1) 実験室での飲食、喫煙、化粧、食料の貯蔵などは行ってはいけません。
- (2) 実験では作業衣(白衣)を着用し、その作業衣のまま実験室の外に出てはいけません。
- (3) 作業衣などを着用して事務室、図書館、会議室、講義室、食堂など公共の場へ行ってはいけません。
- (4) 微生物の入った容器は、他の容器と区別し、標識をつけます。
- (5) 実験台、床、実験器具などの消毒、滅菌を励行します。
- (6) 微生物実験に使用した器具、容器はオートクレーブや70%エタノールなどにより滅菌します。
- (7) 胞子形成能のある酵母、カビなどは、70%エタノールで滅菌することができないので、 乾熱やオートクレーブで滅菌します。

15.4.2 動物実験の安全

- (1) 厳重に品質管理されている実験動物を購入し、一定の検疫期間を経た後に清浄な環境下で飼育し、実験に供します。
- (2) 動物に病原性を発現せずに潜在している病原体もあるので、実験動物取扱いの際には噛み傷、ひっかき傷などの防止に努めます。
- (3) 使い捨てのメスや注射針、注射筒などは動物実験に使用したか否かを問わず、安全キャップをした上でプラスチックあるいは金属製の容器に入れ、専門業者に引き渡します。
- (4) 動物飼育室内での昆虫、特にゴキブリの発生は病原体の媒介、外部への漏出の原因となるので駆除に努めなければいけません。
- (5) 動物死体や臓器は、ビニール袋などに密封したうえフリーザーで冷凍保管しておき、専門の引き取り業者に処理を委託します。

15.4.3 植物実験の安全

実験の目的によっては、野外からの採取、もしくは購入、又は自分で種子から生育させた実験植物を利用することがあります。人体に影響を与える病原菌が発生することはまずないと考えられますが、実験植物を育成するために使用する各種農薬・肥料・農機具類が人体に影響を与えうることを念頭に作業することが必要です。また室内(培養室内)で植物を育成する場合には、恒温装置(水槽・培養器)を使用するため、それらの機械類の取扱いに注意することが必要です。

- (1) 実験室内では白衣を着用し、実験台・培養器を清潔に保ちます。
- (2) 野外フィールドでの調査研究・作業では、作業に適した服装をします。
- (3) 農薬・肥料・農機具の使用にあたっては、危険性を考え安全に配慮します。
- (4) 毒性を有する植物から身を守るため、知らない植物に触れてはいけません。
- (5) 実験に使用した植物体は焼却するか、もしくは堆肥とします。
- (6) 室内(培養室内)での昆虫の発生は、生育している植物に大きな被害を与える原因とな

るため、発見した場合は速やかに実験指導者に連絡します。

15.4.4 組換えDNA 実験の安全

国際条約(生物多様性条約)により、遺伝子組換え実験を行い、遺伝子組換え生物を取り扱うには、特別の許可が必要です。実験の種類により、必要な許可が異なります。詳しい内容は、「愛媛大学遺伝子組換え実験安全管理規程」に記載されています。不明な点は、工学部総務チームを通して、「愛媛大学遺伝子組換え実験安全管理委員会」までお尋ね下さい。

一般に、遺伝子組換え実験は、二重の安全対策を講じることが義務づけられています。一つは 物理的に組換え遺伝子を持つ微生物(組換え体)を外界に出さないように閉じこめてしまうもの で、P2実験室などと呼ばれる特殊な施設が必要です。

もう一つの安全対策法は、生物的に行うもので、実験室内の培養装置の中以外では生きていけないような非常に弱い微生物を宿主として利用することにより、万一試験管の外に菌が漏れてもすぐ死滅してしまうようにし、汚染を防ぐものです。これが生物学的封じ込めで、その尺度はB1、B2という数字であらわされています。工学部で遺伝子組換えを行っている研究室は、現在、P2-B1かP2-B2レベルまでです。したがって、それ以上の実験施設を必要とする遺伝子組換え実験は、実験施設の改良をほどこさない限り、行えません。

実際に実験を行う際は、「愛媛大学遺伝子組換え実験安全管理規定」を遵守して行ってください。 実験を始める前には、まず、遺伝子組換え実験申請書を提出し承認を得る必要があります。また、 実験者は、予め教育訓練を受け、次の事項について、実験指導者とよく相談してください。

- (1) 自分の行う実験の物理的封じ込めレベル (P1, P2, P3, P4) 生物学的封じ込めレベル (B1, B2) をよく理解してください。
- (2) 物理的封じ込めレベルに関わる施設、設備、実験実施要項を理解してください。
- (3) 組換えDNA実験が許可されているかどうか、とくに申請実験期間を越えていないかを 確認してください。
- (4) 組換え体増殖実験のうち20ℓを超える大量培養実験には、組換え体作製実験とは別の物理的封じ込めレベル(LS-C、LS-1、LS-2)が設定されているので、その施設、設備、実験要項を理解してください。

15.4.5 組換えDNA 実験における具体的注意事項(P1レベル)

20リットル以下の規模で行う実験についてのP1レベルの物理的封じ込めに関する規定を「組換えDNA実験指針」より以下に抜粋します。

- (1) 封じ込めの設備、実験室の設計 実験室は、整備された通常の微生物学実験室と同じ程度の設備を備え、かつ、設計が 施されていること。
- (2) 実験実施要項
 - イ) 実験中、実験室の窓及び扉は閉じておくこと。
 - ロ) 実験台は毎日、実験終了後消毒すること。また、実験中汚染が生じた場合には、直ち に消毒すること。

- ハ) 組換え体を含むすべての廃棄物は、廃棄の前に滅菌すること。その他の汚染された機器などは、洗浄、再使用及び廃棄の前に消毒又は滅菌すること。
- ニ)機械的ピペットの使用が望ましいこと。
- ホ) 実験室内での飲食、喫煙、及び食品の保存はしないこと。
- へ)組換え体を取り扱った後、及び実験室を出るときは、手を洗うこと。
- ト) すべての操作においてエアロゾルの発生を最小限にするよう注意を払うこと。
- チ)汚染した物質などの汚染を実験室以外の場所で除去しようとするときは、堅固で漏れのない容器に入れて、実験室から搬出すること。
- リ) 実験室の昆虫、げっ歯類などの防除をすること。
- ヌ)他の方法がある場合には、注射器の使用は避けること。
- ル)実験室内では、実験着などを着用し、退室時にはこれを脱ぐこと。
- ヲ) 実験室は、常に整理し、清潔に保つこと。
- ワ) その他実験責任者の定める事項を遵守すること。

15.4.6 組換えDNA実験における具体的注意事項(P2レベル)

20リットル以下の規模で行う実験についてのP2レベルの物理的封じ込めに関する規定を「組換えDNA実験指針」より以下に抜粋します。

(1) 封じ込めの設備

組換え体の処理を行うため、ブレンダー、凍結乾燥器、超音波細胞破砕装置、遠心分離機等のエアロゾルが大量に発生しやすい機器を使用するときには、汚染エアロゾルが外部に漏出しないように工夫すること。キャビネットを使用する場合は安全キャビネットが望ましい。なお、キャビネットの性能は必要に応じて検査を行うこと。

(2) 実験室の設計

実験室は、汚染物及び廃棄物の処理のための高圧滅菌器を備えた建物内に置くこと。

- (3) 実験実施要項
 - イ)実験中、実験室の窓及び扉は閉じておくこと。
 - ロ) 実験台は、毎日、実験終了後消毒すること。また、実験中汚染が生じた場合には、直 ちに消毒すること。
 - ハ)組み換え体を含むすべての廃棄物は、廃棄の前に滅菌すること。その他の汚染された 機器は、洗浄、再使用及び廃棄の前に消毒又は滅菌すること。
 - ニ)機械的ピペットを使用すること。
 - ホ) 実験室内での飲食、喫煙、及び食品の保存はしないこと。
 - へ)組換え体を取り扱った後、及び実験室を出る時は、手を洗うこと。
 - ト) すべての操作においてエアロゾルの発生を最小限にするように注意を払うこと。
 - チ) 汚染した物質などの汚染を実験室以外の場所で除去しようとするときは、堅固で漏れ のない容器に入れて、実験室から搬出すること。
 - リ) 実験室の昆虫、げっ歯類などの防除をすること。
 - ヌ)他の方法がある場合には、注射器の使用は避けること。

- ル)実験室内では、実験着などを着用し、退室時にはこれを脱ぐこと。
- ヲ) 実施されている実験の性質を知らない者のみを実験室に入れないこと。
- ワ) 実験が進行中の場合には、P2レベル実験中の表示を実験室の入口に掲げること。
- カ) 実験室は、常に整理し、清潔に保つこと。
- ョ) 封じ込めレベルがP1でよいとされる他の実験を同じ実験室で同時に行う場合には、明確に区域を設定して注意深く行うこと。
- タ) その他実験責任者の定める事項を遵守すること。

16. 排水・廃液の取扱いについて

16. 排水・廃液の取扱いについて

愛媛大学の教育・研究の活動において生じる実験排水、生活排水は松山市の下水道に流入し、終末処理場で浄化されて、公共水域(河川や海等)に放流されています。松山市の終末処理場は主として微生物により浄化するシステムとなっていますので、これらの処理場が安定して良好な処理を行うためには、微生物に有害な物質あるいは微生物で分解されない物質を流さないようにしなくてはいけません。

愛媛大学から松山市の下水道に流入する排水は、定期的に検査されており、もし、法令で定められた排水基準値(表16-1)を超えると厳重な注意があり、場合によっては大学の排水を松山市の下水道に流すことを禁止され、大学の教育・研究の機能が停止することになります。

したがって、実験で生じる**排水**(下水として下水道に流れるもの)や**廃液**(タンクに貯留して 収集するもの)の取扱いには十分な注意を払って、有害な物質を工学部から出さないようにする ことを肝に銘じて実験しなければいけません。愛媛大学は地域社会とお互いに共存する関係にあ ることを、排水の安全性を通して認識する必要があります。

16.1 安全な実験のために

排水、廃液の取扱いについて述べる前に、まず強調しておきたいことは、実験において有害な 排水、廃液を出来るだけ出さないようにすることです。水銀をはじめとして、シアン化合物、ジ クロロメタン、ベンゼン、四塩化炭素等を使用する場合、最小限の使用量となるように研究全体 を検討してから実験に取りかかるようにします。特に、法令で規制されている重金属および有機 溶媒を取扱う場合には、これらを排水として下水道に流すことが絶対にないように細心の注意を 払うことが必要です。取扱い中に誤って薬品入り容器を破損した場合、以下に準じた処置をしま す。

水銀、カドミウム、シアン、鉛、クロム、銅、亜鉛等の重金属廃液は絶対に排水として実験室 の流しに流さないですべて回収し、研究室に備えている各無機系廃液用のタンクに貯留します。 重金属水溶液が入っていたフラスコ等をすすいだ洗浄液もすべて回収し、重金属廃液用のタンク に貯留します。

法令で規制されている有機溶媒も絶対に排水として実験室の流しに流してはいけません。特に、 ジクロロメタン、ベンゼン、フェノール類等はすべて回収し、研究室に備えている各有機系廃液 用のタンクに貯留します。実験や溶媒濃縮に使用したフラスコ等は、アセトンまたはエタノール で少なくとも3回の洗浄を行い、洗浄液もすべて回収してタンクに貯留します。

エバポレーターや、有機溶媒を用いる吸引濾過において水流アスピレーターを用いると、有機溶剤が蒸発して水流アスピレーターの水に溶け、実験室の流しから下水道に流入しますので、このような操作は絶対にしないことです。このような場合は、循環アスピレーターやダイヤフラムポンプを用いて減圧し、密閉系で蒸発させ、有機溶媒が下水道に流れ込まないようにします。なお、循環アスピレーターの水には高濃度の有機溶剤が溶解している場合が多いので、難燃性有機廃液として、廃液タンクに貯留します。

溶媒抽出後の水相にも、高濃度の有機溶剤が溶解している場合が多いので、難燃性有機廃液と して、廃液タンクに貯留します。

16.2 廃液の分類

愛媛大学で発生する廃液は全て外部の処理業者に委託して処理していますので、委託された業者が適正に処理できるように廃液を分別して引き渡す必要があります。本学では、発生した廃液を「実験等廃液回収フロー」と「実験等廃液回収について」に従って分類し、愛媛大学指定の耐腐食性のプラスチック製タンク(10リットル)に分別収集しています。間違いは事故の原因となり、場合によっては回収できないこともありますので、十分な注意が必要です。

(1) 無機系廃液

- イ) 水銀廃液 (pH5~9)
- ロ)シアン廃液(シアン化物、重金属のシアン錯塩などシアン化合物廃液でpH12以上のア ルカリ性にして保管)
- ハ) 重金属廃液(ヒ素・カドミウム・鉛・クロム・セレンを含むものでpH9未満で保管)
- 二)その他の重金属廃液(ヒ素・カドミウム・鉛・クロム・セレン以外の重金属を含むものでpH9未満で保管)
- ホ)廃アルカリ廃液(写真用現像液など、pH9以上に調整する)

(2) 有機系廃液

- イ) 廃油(灯油、機械油、切削油等の廃油)
- ロ) 有害廃液 (ハロゲン・硫黄系・ベンゼンを含むもの)
- ハ) 可燃性有機廃液 (可燃性の廃液)
- ニ) ホルマリン廃液 (ホルマリンを含む廃液)
- ホ) 難燃性有機廃液(低濃度の有機溶媒、有機酸、フェノール類、アミン類、有機金属化 合物などを含む水混合液)
- 注)①有機水銀、PCBを含まないこと
 - ②粘度が異常に高くないこと
 - ③無機系廃液は有機溶媒をできるだけ含まないこと
 - ④有機系廃液は塩酸、硫酸、硝酸等の腐食性物質をできるだけ含まないこと

16.3 廃液の取扱いについての注意

どの廃液も有害で危険ですので、保管、運搬する際はふたをしっかりと締めて、こぼれないようにします。廃液の処理に支障をきたす恐れがあるので、廃液中にはガラス管や撹拌子等の異物を入れてはいけません。廃液をタンクに移すときは、網を通してから入れるようにします。

(1) 水銀廃液

濃度規制が厳しい(0.005mg/ℓ)ので、回収は特に厳重に行います。金属水銀は収集 しないので貯留タンクには入れてはいけません(金属水銀は個々に業者に連絡して処分 すること)。有機水銀は適当な酸化剤(過マンガン酸カリウム等)で酸化して無機水銀に しておくことです。

(2) シアン廃液

酸性にすると猛毒性のシアン化水素ガスが発生して危険ですので、必ずpH12以上のア

ルカリ性にして貯留します。

(3) 廃油および可燃性有機廃液

引火性があるので火気には十分に注意します。特殊引火物および爆発性の危険物を含まないこと。

(4) 有害廃液 (ハロゲン・硫黄系廃液)

ハロゲン系の有機溶剤は、大部分が有毒性、発ガン性を有するので注意を要します。 また、燃焼処理の際にダイオキシンを発生する恐れがあり、加えて塩素系のガスが装置 を傷めますので、出来るだけ実験に使用しないようにすることが望ましいです。

(5) ホルマリン廃液

感染性の恐れのあるものは、収集の対象外とします。

(6) 廃酸・廃アルカリ

有害物質を含まないことが確実な塩酸、硫酸等の廃酸および水酸化ナトリウム、水酸 化カリウム水溶液等の廃アルカリは、中和処理してから下水道に排出します。ただし、 酸とアルカリを混ぜると中和時に熱が発生し、有毒ガスを発生することもあるので、十 分注意しながら行います。

有機溶媒、重金属水溶液の取扱いがわからない場合は、各研究室の排水管理責任者、 実験を担当している教職員、または廃液処理担当職員に相談して対処します。自分勝手 な判断で薬品の処理、取扱いを絶対にしないことです。

16.4 収集方法

廃液回収は毎月1回所定の場所で行なわれます。また、決められた日時以外は回収されないので注意が必要です。「廃液回収カレンダー」は、安全衛生HPに掲載してあります。

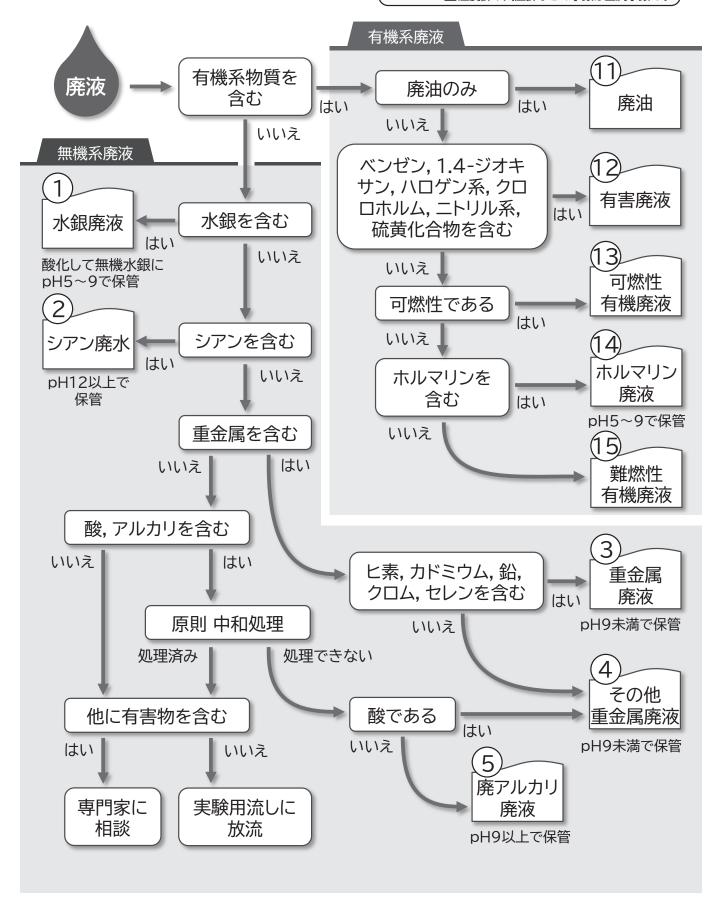
回収廃液がある場合は「有害廃液回収処理連絡票」を下記担当者に回収日の前々日の17時までに、メールに添付して(Subjectに「廃液回収連絡票」を必ず入れて)提出します。提出のない場合及び連絡票に記載のない廃液容器については、回収されません。「有害廃液回収連絡票」は、安全衛生HPに掲載してあります。

文京3番地区:施設基盤部安全環境課環境管理チーム (内線8125) (メール kankyou@stu.ehime-u.ac.jp)

愛媛大学指定の廃液容器には、「容器所有者の地区」、「廃液の分類」、「廃液の種類」及び「所有者の内線番号」等が明確となるように容器に記入し、廃液を入れたのち密栓します。

工学部で出た廃液は、工学部1号館前で受付をした後、工学部1号館西側において回収車両へ 積込みます。なお、空容器は翌月の回収日に、回収場所で所有者に返却されるので必ず取りに行っ てください。

*安全衛生HP (学内限定)


(http://shisetsu.office.ehime-u.ac.jp/contents/kankyoukanri/#haieki)

実験等廃液回収フロー

有機水銀,金属水銀,PCBは 回収できません!

▲無機水銀と有機物の混合は有機水銀です ▲温度計や気圧計などの水銀は金属水銀です

1. 廃液の分類

分類	番号	廃液名	廃液の種類等	注意事項等
	1	水銀廃液	無機水銀廃液(有機水銀は酸化して無機化する) 金属水銀,有機水銀は回収できません	pH5~9に調整
	2	シアン廃液	シアン化物,重金属のシアン錯塩等シアン化合物廃液	pH12以上に調整
無 機 系	3	重金属廃液	ヒ素、ヒ素化合物廃液 カドミウム、鉛、クロムを含む廃液 セレンを含む廃液	pH9未満に調整
廃液	4	その他 重金属廃液	・上記③以外の重金属を含む廃液 ・写真用定着液 ・塩酸, 硫酸等各種廃酸液:危険性が無いように希釈する (原則:各自で中和処理後,ほかに有害物を含まなければ実験用流しに放流)	pH9未満に調整
	⑤	廃アルカリ廃液	・重金属を含まない各種アルカリ廃液 (原則:各自で中和処理後,ほかに有害物を含まなければ実験用流しに放流) ・写真用現像液	pH9以上に調整
	1	廃油	灯油,機械油,切削油等の廃油	
有	12	有害廃液	ベンゼン, 1.4-ジオキサン, ジクロロメタン等ハロゲン系化合物, クロロホルム, ニトリル系化合物及び硫黄化合物を含む有機溶媒類	引火性物質を含むものは 希釈する
機 系	13	可燃性廃液	トルエン, キシレン, ヘキサン, 酢酸, 酢酸エチル, ジエチルエーテル, スチレン, アセトン, 各種アルコール類及び溶媒で希釈されたエーテル類等, 可燃性の非 水溶媒類を含むもの	水を5%以上含むものは 「難燃性廃液」へ
廃 液	14)	ホルマリン廃液	ホルマリンを含む廃液	pH5~9に調整
	15)	難燃性廃液	・フェノール類, アミノ酸類, 尿素, 尿酸, シュウ酸, アンモニア水等の有機物の水溶液及び水を含む各種アルコール類や有機溶媒・金属錯体を含む水溶液	引火性物質を含むものは 希釈する

2. 廃液容器等

(1)容器への表示

① 容器取っ手部にはビニールテープ2回巻き以上で,以下の色別表示をする。

・容器所有者(使用者)の地区表示

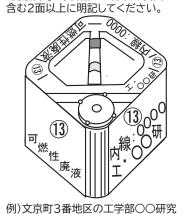
-	・廃液の分類表示										
	無機系廃液	有機系廃液									
	灰	赤									

- 文京2番地区 文京3番地区 樽味地区 重信地区 黄 緑
- ② 廃液の種類ごとに、「廃液の分類番号」又は「廃液名」を容器の2箇所(面)以上に明示する。・無機系廃液:①~⑤又は「水銀廃液」~「廃アルカリ廃液」(番号と廃液名の併記も可)

 - ・有機系廃液:⑪~⑮又は「廃油」~「難燃性廃液」(番号と廃液名の併記も可)
- ③ 所有者(使用者)が、明確となるように容器に明示する。 例)工学部〇〇研究室の場合:内線番号(必ず),「工・〇〇研」又は所有者自身が分かる文字, 記号, 符号, イラスト等

(2)廃液容器

- ① 廃液容器は,本学の指定容器とする。
- 廃液を入れる時は、網(60メッシュ以上)を通して入れる。
- 廃液は容器の8割程度までしか入れない。


3. 廃液回収場所, 日時

文京2番地区	1	廃液は, 指定日時に指定場所にて回収する。(回収日時・場所は別途参照)
文京3番地区	2	容器の返却は、翌回収日に、所有者に直接返却する。
樽味地区	1 2	廃液は、回収日前日の13:30~14:30に指定の場所にて回収する。 容器の返却は、翌月の回収日に指定の場所に返却される。 同時に一斉メールにて容器所有者に平日の13:30~14:30に指定の場 所まで容器を受取に来てもらうよう連絡する。
重信地区	1 2	廃液は、医学部経理調達課調達第一チームへ回収申込用紙を提出の上、 随時、所有者が図書館西側の薬品庫に搬入する。指定日時に業者が回収 する。 回収処理後の空容器は、翌月の回収日に図書館西側の薬品庫に返却され る。所有者が必要時に薬品庫から受け取る。

4. その他

- ① 廃液は,有機水銀,金属水銀,PCBを含まないこと。
- 廃液は、粘度が異常に高くないこと。
- 無機系廃液は、有機溶媒をできるだけ含まないこと。 3
- 有機系廃液は,塩酸,硫酸,硝酸等の腐食性物質をできるだけ含まないこと。

・廃液番号は、容器の上部及び側面を

例)文京町3番地区の工学部〇〇研究 室から酢酸を含む有機系の可燃性廃液 を出したい場合。

有害廃液回収処理連絡票

本票提出日	
回収日	
団地名	
建物名	
部局等名	
専攻·学科名	
講座等名	
担当教官名	
記入者名	
連絡先(内線)	
化学物質管理 責任者名	
連絡先(内線)	

- ※記入上の注意事項
- 1.団地名は以下の通り記入する。
- 城北団地:文京2又は文京3,重信地区:重信,
- 樽味地区:樽味
- 2.回収日は地区ごとに決められた月日を記載する。ただし、本票の提出期限は回収日の前々日の17時とする。
- 3.数量は業者に処理を委託する廃液の分類ごとの10L 容器の数を記載する。
- 4.主な成分及び濃度(含有量)は,廃液に含まれる主な成分とその濃度(含有量)を記載する。
- 5.10L容器の取っ手部に次の色分けにてビニルテープ を2回以上巻き,地区及び廃液を明示する。
- 無機系廃液:灰色,有機系廃液:赤色
- 6.廃液の分類ごとに,票中の「容器NO.」又は「廃液の種類」を容器の2面以上の場所に明示する。
- 7.その他,容器には容器の所有者(使用者)が明確になるように「内線番号」及び「研究室名」等を明記する。
- 8.容器の各種表示は容器の所有者(使用者)にて行う。

	容器NO.	廃液の種類	数量(個)	主な成分	濃度(mg/L)又 は含有量(%)
	1	水銀廃液			
4==	2	シアン廃液			
無機系廃液	3	重金属廃液			
液	4	その他重金属廃液			
	(5)	廃アルカリ廃液			
	11)	廃油			
5	12	有害廃液			
有機系廃液	13	可燃性廃液			
液	14)	ホルマリン廃液			
	15	難燃性廃液			
		合計	0		

有害廃液回収処理連絡票

本票提出日	2009.4.22
回収日	2009.4.24
団地名	文京3
建物名	□学部○号館
部局等名	□学部
専攻·学科名	□□専攻・○○学科
講座等名	□□○○講座
担当教官名	城北太郎
記入者名	城北太郎
連絡先(内線)	× × × 2
化学物質管理 責任者名	愛大次郎
連絡先(内線)	x x x I

※記入上の注意事項

- 1.団地名は以下の通り記入する。
- 城北団地:文京2又は文京3,重信地区:重信,
- 樽味地区:樽味
- 2.回収日は地区ごとに決められた月日を記載する。ただし,本票の提出期限は回収日の前々日の17時とする。
- 3.数量は業者に処理を委託する廃液の分類ごとの10L 容器の数を記載する。
- 4.主な成分及び濃度(含有量)は,廃液に含まれる主な成分とその濃度(含有量)を記載する。
- 5.10L容器の取っ手部に次の色分けにてビニルテープ を2回以上巻き,地区及び廃液を明示する。
- 文京2地区:青色,文京3地区:黄色,重信地区:緑色 樽味地区:黒色,
- 無機系廃液:灰色,有機系廃液:赤色
- 6.廃液の分類ごとに,票中の「容器NO.」又は「廃液の種類」を容器の2面以上の場所に明示する。
- 7.その他,容器には容器の所有者(使用者)が明確になるように「内線番号」及び「研究室名」等を明記する。
- 8.容器の各種表示は容器の所有者(使用者)にて行う。

	容器NO.	廃液の種類	数量(個)	主な成分	濃度(mg/L)又 は含有量(%)
	1	水銀廃液	2	水銀含有水溶液	8%
無	3	重金属廃液	1	カドミウム水溶液	5%未満
	3	重金属廃液	3	ヒ素水溶液	5%未満
液	4	その他重金属廃液	1	鉄・銅他の水溶液	10%以下
	5	廃アルカリ廃液			
	11)	廃油	3	真空ポンブオイル	100%
有	12	有害廃液	1	ハロゲン含有水溶液	20%
機系廃	13	可燃性廃液	2	アセトン 酢酸エチル	10%以下
液	14)	ホルマリン廃液			
	15)	難燃性廃液	2	アセトン水溶液	3%未満
		合計	15		

表16-1 松山市の下水道法の排水基準

1	温度		45℃未満			
2	水素イオン濃度		pHが5を超え9未満			
		鉱油類含有量	5mg/l以下			
3	ノルマルヘキサン抽出物質含有量	動植物油脂類含有量	30mg/ℓ以下			
4	ヨウ素消費量		220mg/ℓ未満			
5	カドミウム及びその化合物	0.03mg/ℓ以下				
6	シアン化合物	1mg/ℓ以下				
7	有機リン化合物		1mg/ℓ以下			
8	鉛及びその化合物		0.1mg/ℓ以下			
9	6 価クロム化合物		0.5mg/ℓ以下			
10	ヒ素及びその化合物		0.1mg/ℓ以下			
11	水銀及びアルキル水銀その他水銀	 退化合物	0.005mg/ℓ以下			
12	アルキル水銀化合物		検出されないこと			
13	PCB		0.003mg/l以下			
14	トリクロロエチレン		0.1mg/ℓ以下			
15	テトラクロロエチレン		0.1mg/ℓ以下			
16	ジクロロメタン		0.2mg/ℓ以下			
17	四塩化炭素		0.02mg/l以下			
18	1,2-ジクロロエタン		0.04mg/ℓ以下			
19	1,1-ジクロロエチレン	1mg/ℓ以下				
20	シス-1,2-ジクロロエチレン		0.4mg/ℓ以下			
21	1,1,1-トリクロロエタン		3mg/ℓ以下			
22	1,1,2-トリクロロエタン		0.06mg/ℓ以下			
23	1,3-ジクロロプロペン		0.02mg/ℓ以下			
24	チウラム		0.06mg/ℓ以下			
25	シマジン		0.03mg/ℓ以下			
26	チオベンカルブ		0.2mg/ℓ以下			
27	ベンゼン		0.1mg/ℓ以下			
28	セレン及びその化合物		0.1mg/ℓ以下			
29	ホウ素及びその化合物		10mg/Q以下(河川放流)			
30	フッ素化合物及びその化合物		8mg/ℓ以下(河川放流)			
31	フェノール類		5mg/ℓ以下			
32	銅及びその化合物		3mg/ℓ以下			
33	亜鉛及びその化合物		2mg/ℓ以下			
34	鉄及びその化合物(溶解性)		10mg/ℓ以下			
35	マンガン及びその化合物		10mg/ℓ以下			
36	クロム及びその化合物		クロム2mg/l以下			
37	ダイオキシン類		10pg-TEQ/ℓ以下			
38	アンモニア性窒素、亜硝酸性窒素	及び硝酸性窒素含有量	380mg/ℓ未満			
39	生物化学的酸素要求量 (BOD)		600mg/ℓ未満			
40	浮遊物質量 (SS)		600mg/ℓ未満			
41	1,4-ジオキサン		0.5mg/l以下			
		0.40 /0-1-1-				
42	室素含有量(T-N)		240mg/ℓ未満			

17. 各種金属の取扱注意一覧表

各 種 金 属 の 取 扱 注 意 覧 表

				安全対策										
	金 属 名	原子番号	分類	ゴーグル着用	手袋着用	マスク着用	反復暴露に注意	可燃性粉じん	火気厳禁	禁水性	神経系に影響	変異原性が	発がん性が	水生生物に悪影響
Ag	銀	47	貴の				0							0
Al As	アルミニウム ヒ素	13 33	(半)·卑 半			0	0	0	0	0	0		0	0
Au	金	79												
В	ホウ素	5	半											
Ва	バリウム	56	土・(卑)	0	0	0			0	0				
Ве	ベリリウム	4	(卑)	0	0	0	0		0				0	0
Bi	ビスマス 炭素	83	卑 (半)	0		0			0					
C Ca	カルシウム	6 20	土・(卑)	0	0	0	0	0	0	0				
Cd	カドミウム	48	(卑)	0		Ö	Ŏ		0	Ö		0	0	
Ce	セリウム	58	希・(卑)											
Со	コバルト	27	(卑)	0		0	0		0			0	0	0
Cr	クロム	24	(卑)	0		0			0					
Cs Cu	セシウム 銅	55 29	ア・(卑) (貴)	0	0	0			0					
Dy	到 ジスプロシウム	66	(具) 希・(卑)											
Er	エルビウム	68	希・(卑)											
Eu	ユウロピウム	63	希・(卑)											
Fe	鉄	26	(卑)					0	0					
Ga	ガリウム	31	卑											
Gd Ge	ガドリニウム ゲルマニウム	64 32	希·(卑) 半·(卑)											$\overline{}$
Hf	ハフニウム	72	(卑)	0			0		0					
Hg	水銀	80	(貴)		0	0	Ö				0			0
Ho	ホルミウム	67	希・(卑)											
In	インジウム	49	卑	0		0	0		0					
Ir K	イリジウム カリウム	77 19	貴 ア・(卑)		0				0					
La	ランタン	57	ゲ・(卑) 希・(卑)	0		0				0				
Li	リチウム	3	ア・(卑)	0	0	0			0	0				
Lu	ルテチウム	71	希・(卑)											
Mg	マグネシウム	12	(卑)	0		0		0	0	0				
Mn	マンガン	25	(卑)			0	0		0					0
Mo Na	モリブデン ナトリウム	42 11	(卑) ア・(卑)	0	0	0			0	0				
Nb	ニオブ	41	(卑)											
Nd	ネオジム	60	希・(卑)											
Ni	ニッケル	28	(卑)			0	0		0				0	
Os	オスミウム	76	貴											
Pb	鉛 パラジウム	82	卑			0	0					0	0	
Pd Pr	プラセオジム	46 59	貴 希・(卑)											-
Pt	白金	78	貴	0		0								
Rb	ルビジウム	37	ア・(卑)											
Re	レニウム	75	(卑)											
Rh	ロジウム	45	貴	0		0								
Ru Sb	ルテニウム アンチモン	44 51	貴 半・(貴)	0		0	0		0			0	0	
Sc	スカンジウム	21	干・(貝 <i>)</i> 希・(卑)											
Se	セレン	34	(半)	0	0	0	0		0		0		0	0
Si	ケイ素	14	半	0	0	0		0	0					
Sm	サマリウム	62	希・(卑)											
Sn	スズ	50	卑	0		0	0		0					
Sr Ta	ストロンチウム タンタル	38 73	土 · (卑) (卑)	0		0			0	0				
Tb	テルビウム	65	希・(卑)											
Te	テルル	52	半	0		0			0		0			
Ti	チタン	22	(卑)					0	0					
TI	タリウム	81	卑			0					0			
Tm V	ツリウム	69	希·(卑) (卑)											
W	バナジウム タングステン	23 74	(卑)	0	0	0			0					
Y	イットリウム	39	希・(卑)			0								
Yb	イッテルビウム	70	希・(卑)											
Zn	亜鉛	30	(卑)		0	0	0	0	0	0				
Zr	ジルコニウム	40	(卑)	0			0		0					

ア:アルカリ金属

土:アルカリ土類金属

貴:貴金属 卑:卑金属 半:半金属

希:希土類元素(レアアース)

データなし

- ※1 特定化学物質障害予防規則
- ※2 化学物質排出把握管理促進法
- ※3 消防法
 - a. アルカリ金属、アルカリ土類金属、Fe粉、Mg 以外でも、目開き 150 μm の網ふるいを 50% 以上通 過する金属粉は危険物第2類 (可燃性固体)に指定される。Cu粉 と Ni粉 を除く。b. ただし別表に示される指定数量未満の危険物の貯蔵または取り扱いについては規制されない。

 - c. ただし少量 (指定数量の5分の1以上) を貯蔵し、又は取り扱おうとする者は、あらかじめ、その旨を 消防長又は消防署長に届け出なければならない一松山市火災予防条例 第46条より一部抜粋。

						法令	則亿							
特化物 ※1	事物及び	PRTR **2	消防法 ※3	粉じん則 ※4	大気汚染防止法	法 水質汚濁防止法	下水道法	土壌汚染対策法	農薬取締法	廃棄物処理法	リスト規制 ※6	質管理規定 ●	SDS保管義務	備考
•	•	•	•	•	•	•	•	•	•	•		•	√ √	表面に酸化被膜を形成。粉末は自然発火しやすい。
•		•	•		•	•	•	•			•	•	✓	空気中で酸化および窒化。 空気中で酸化。粉末は自然発火しやすい。 表面に酸化被膜を形成。 表面に酸化被膜を形成。
			•										√	空気中で酸化。水と反応し水素を発生。
•		•	•		•	•	•					•	\(\)	空気中で酸化。粉末は自然発火しやすい。 表面に酸化被膜を形成。 表面に酸化被膜を形成。 融点 28℃。粉末は自然発火しやすい。 表面に酸化被膜を形成。
			•			•	•							表面に酸化被膜を形成。水溶性。 表面に酸化被膜を形成。水溶性。 表面に酸化被膜を形成。水溶性。 空気中で酸化。 表面に酸化被膜を形成。粉末は自然発火しやすい。 表面に酸化被膜を形成。融点 30℃。 表面に酸化被膜を形成。水溶性。
•	•	•			•	•		•		•	•	•	√ √	表面に酸化被膜を形成。粉末は自然発火しやすい。 融点 -38℃。 表面に酸化被膜を形成。水溶性。 表面に酸化被膜を形成。
	•		•								•			空気中で酸化。水と反応し水素を発生。 空気中で酸化。水溶性。 水と反応し水素を発生。 表面に酸化被膜を形成。水溶性。 表面に酸化被膜を形成。酸や熱水と反応し水素を発生。
•	•	•	•		•	•	•					•	√ √	表面に酸化液膜を形成。 表面に酸化液膜を形成。 空気中で酸化。水と反応し水素を発生。 表面に酸化液膜を形成。 表面に酸化液膜を形成。 表面に酸化液膜を形成。
		•				•					•	•	✓	表面に酸化被膜を形成。微粉末は自然発火しやすい。
		•			•	•	•	•				•	✓	表面に酸化被膜を形成。
														表面に酸化被膜を形成。
			•											融点 39℃。空気中で酸化。自然発火しやすい。
		•					•	•				•	✓ ✓	空気中で酸化。水溶性。
			•											表面に酸化被膜を形成。 表面に酸化被膜を形成。 表面に酸化被膜を形成。 表面に酸化被膜を形成。粉末は自然発火しやすい。 表面に酸化被膜を形成。粉末は自然発火しやすい。 表面に酸化被膜を形成。 表面に酸化被膜を形成。水溶性。
														表面に酸化被膜を形成。粉末は自然発火しやすい。 空気中で酸化。 表面に酸化被膜を形成。水溶性。
											•			表面に酸化被膜を形成。 表面に酸化被膜を形成。
						•	•							表面に酸化被膜を形成。 表面に酸化被膜を形成。水溶性。 表面に酸化被膜を形成。粉末は自然発火しやすい。
														表面に酸化被膜を形成。

※4 粉じん障害防止規則

a.動力を用いて金属を研磨し、若しくはばり取りし、又は金属を裁断する場所における作業や、アーク溶接作業等で発生する粉じんについては金属の種類によらず規定される。 ※5 金属等を含む産業廃棄物に係る判定基準を定める省令

※6 輸出貿易管理令または外国為替令

a. 輸出しようとする貨物が上記法令で規定された項目に該当する場合, 貨物の輸出先や技術の提供先 がいずれの国であっても事前に経済産業大臣の許可を受けなければならない。

加致 冲机场儿	3192,470	
品 名	指定数量	
Fe粉	500kg	
金属粉	100kg	
Mg	100kg	
K,Na	10kg	
アルカリ金属又は アルカリ土類金属	10kg	

18. 事故報告書

18. 事故報告書

実験・実習中に事故を起こした場合、下記の報告書を提出してください。

工学部 事故報告書

No.

学科(研究分野)					
発 生 日 時		年	月	日	時頃
場所					
作業(実験)内容					
事故者名	学籍番号	・職員番号			
	名 前				
型 置					
指 導 者 名 (責任者と異なる場合)					
報告者					

※ 作業中(実験中)に職員、学生がケガをした場合、ケガの程度に関わらず、状況と処置を記載して、安全衛生管理者()へ提出してください。安全管理の資料となります。

19. 安全衛生学生委員

安全衛生学生委員について

1. 概要

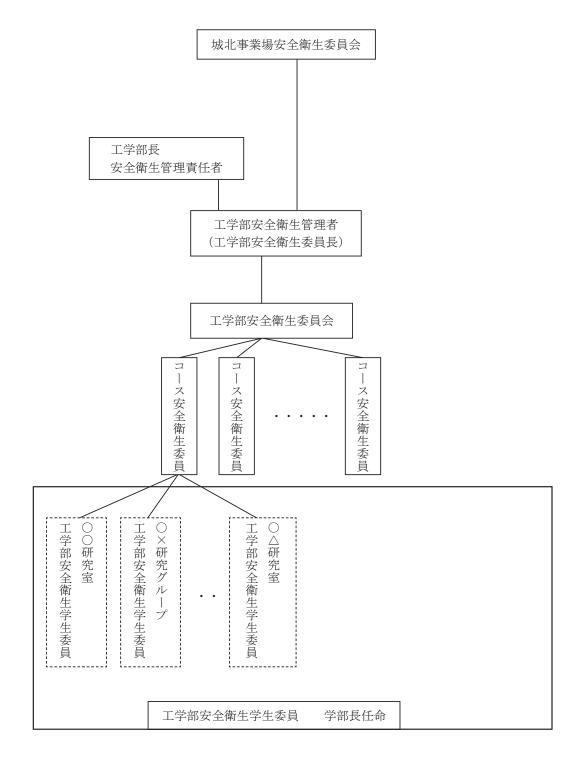
現状では、研究室における研究で実際に実験に携わっているのは、圧倒的に学生の人数が多い。従来から、研究室の教員が、それぞれの研究室の実情にあわせて、適宜安全衛生教育を行ってきた。しかし、教職員のいない場合、学生たちが意図せずに危険な操作をおこなう可能性を否定できない。このような危険行為は、安全衛生委員による巡視活動では発見できない。実際に実験を行っている学生が学生の目で自ら危険であるとの認識を持たせ、危険回避活動ができるようになる必要がある。

そのためには、学部の安全管理者が学生に対して定期的に安全衛生教育を行い、安全衛生意識の向上と教育レベルの向上を図ることが必要である。さらに、学生に対して直接安全衛生にかかわる情報を伝達し周知徹底を図ること、および学生からの危険情報をくみ上げる仕組みがまず必要となる。これらを実現させるために、研究室あるいは研究グループの学生への情報の伝達係や安全衛生活動に対する学生のリーダーとして活躍する「安全衛生学生委員」を委嘱する。

これは、労働安全衛生法が適用されない学生についても、教職員に準じて安全衛生 規定が適用されるようになった平成22年度改定の愛媛大学安全衛生規定を、現実的に 実施するための具体的な行動であり、愛媛大学の中期計画にある「全学的な安全衛生 管理を推進し、構成員の意識向上を図る体制を強化する。」に対する工学部としての取 り組みであるとともに、「平成23年度安全衛生管理活動計画(2)学生を含めた安全衛生 教育及び啓発活動の実施④学生を含めた安全衛生管理体制を構築し運用する」に対応 する活動でもある。

2. 目的

- ・学生への安全衛生情報の周知徹底
- ・学生の安全衛生意識の高揚および教育レベルの向上
- ・研究室あるいは研究グループ内の危険情報の収集、報告


3. 対象者

- ・研究室あるいは研究グループから1名 (研究室あるいは研究グループとは、研究を行っている学生を掌握できる範囲)
- ・修士1年あるいは、博士1年が望ましいが、他の学年でも可能
- ・任期は原則1年

4. 活動内容

- ・安全衛生にかかわる各種の情報を研究室あるいは研究グループ内の学生に連絡する。
- ・年2回の安全衛生教育に参加し、学生に周知徹底させる。
- ・研究室あるいは研究グループ内の危険行為を所属コース安全衛生委員に報告する。
- ・事故発生時や災害時に教員を補佐する。

安全衛生学生委員体制図

愛媛大学工学部安全衛生学生委員の活動について

工学部安全衛生委員会

1. 目的

学生への安全衛生情報の周知徹底、学生の安全衛生意識の高揚及び教育レベルの向上、研究室あるいは研究グループ内の危険情報の収集・報告等、工学部に所属する学生の安全衛生水準の向上を図るため、安全衛生学生委員を委嘱する。

2. 内容

- (1) 安全衛生にかかる各種情報の研究室あるいは研究グループ内の学生への連絡を行う。
- (2) 年2回の安全衛生教育に参加し、学生に周知徹底させる。
- (3) 研究室あるいは研究グループ内の危険行為を所属学科の安全衛生委員 に報告する。
- (4) 事故発生時や災害時に教員を補佐する。

20. 安全衛生規程関係

愛媛大学大学院理工学研究科(工学系)における ウラン又はトリウムを含む原材料等の安全確保に関するガイドライン

平成22年7月30日 工学部安全衛生委員会

1. ガイドラインの目的及び位置付け

このガイドラインは、ウラン又はトリウムを含む原材料等の取扱いに際しての無用な放射線被ばくによる健康上のリスクの低減と安全確保を目的として、理工学研究科(工学系)における必要な措置を定めるものである。

ウラン,トリウムを含む原材料等については、核原料物質、核燃料物質及び原子炉の規制に関する法律、労働安全衛生法及び電離放射線障害防止規則(以下「各法令」という。)の規制対象となる場合には、それに従うものとする。各法令の規制を受けない原材料等については、「ウラン又はトリウムを含む原材料、製品等の安全確保に関するガイドライン」(平成21年6月26日 文部科学省)を適用するものである。

理工学研究科(工学系)では、上記の各法令の規制を受けない原材料等を取り扱う場合において、当該実験・研究に従事する学生・教職員の被ばく線量を1mSv/年以下とし、これを超えないようにする措置、当該実験・研究に関わらない学生や教職員を被ばくの危険にさらさない措置及び周辺の環境を汚染させない措置並びに実験・研究に使用する原材料等の工学部への持ち込みと保管、返却に関する手続きについて、ガイドラインを定めることとした。

2. 本ガイドラインの対象となる原材料等

自然のウラン又はトリウムを含む原材料等であり、ウラン又はトリウムの濃度が上記の各法令の規制を受けない濃度である74Bq/g以下のものとする。ただし、1Bq/g以下のものを除く。

3. 実施責任者の選任と業務

ウラン又はトリウムを含む原材料等を取り扱う場合,実施責任者を選任し,工学部安全 衛生管理者に届け出なければならない。

実施責任者は、作業者の被ばく線量の管理、作業安全教育、自主管理区域の設定、安全 及び被ばく防止の措置、原材料の受入れ、保管、返還に関する業務に責任を持つ。

4. 作業安全教育

実施責任者は、当該原材料等を取り扱う作業を行う者に対して、作業を始める前に、事 故や環境汚染を防止し、被ばく放射線量を低減させる目的で、当該原材料等の安全な取扱 い, その他必要な事項について作業安全教育を行い, 教育の実施日と実施時間, 受講者リスト及び教育内容の記録を保存しなければならない。

5. 自主管理区域の設定

ウラン又はトリウムを含む原材料等を保管する場合及び当該原材料等を使用して加工, 分析,合成などの実験を行う場合には,あらかじめ下記の条件を満たす適切な自主管理区域を設定し、工学部安全衛生管理者へ届け出なければならない。

原材料等は、自主管理区域内の施錠できる保管庫に保管し、実施責任者の許可無く自主 管理区域外へ持ち出してはならない。

- ①自主管理区域は、不用意に関係者以外が立ち入ることができないように区切られた独立した区域を設定し、その境界には「ウラン及びトリウム自主管理区域」及び「関係者以外立入禁止」の表示を行うこと。
- ②自主管理区域の境界では空間線量が0.5 µSv/h以下であること。
- ③自主管理区域に立ち入る者には個人被ばく線量計を持たせ、作業に関わる被ばく線量を管理する。
- ④自主管理区域からはウラン又はトリウムを含む原材料等により汚染されたゴミ等を持ち出さず、当該研究が終了したのち、残原材料等とともに、搬入者へ返却する。

6. 搬入手続き等

ウラン又はトリウムを含む原材料等を工学部に持ち込む場合には,実施責任者は搬入に 先立ち下記の情報を工学部安全衛生管理者に報告するものとする。

- ①製品名,製造事業者名
- ②原材料等の種類, 重量及び原産地(又は加工地)
- ③製品中のウラン又はトリウムの放射能の濃度
- ④ウラン, トリウムの物理化学的性状
- ⑤作業内容
- ⑥取扱い上及び保管上の注意事項
- ⑦保管場所
- ⑧返却予定日及びその方法
- ⑨その他必要事項

7. 放射線の測定及び被ばく線量の管理

実施責任者は、自主管理区域内で作業する作業者に対する被ばく線量の管理を行う。作業者の被ばく線量が1mSv/年を超える恐れがある場合には、工学部安全衛生管理者へ報告し、その指導を受けなければならない。

8. 作業内容の記録

各作業者は,作業記録を作成し,以下の項目と健康状況を含めた作業内容等について記録し保存する。

実施責任者は、1月に1回及び必要に応じその都度、作業記録を点検する。

- ①作業者名(作業内容の確認と同意)
- ②自主管理区域内への立入と退出の日時と作業内容
- ③取扱い材料の放射線量明記(材料との距離を併記)
- ④取扱い材料の重量の明記
- ⑤取扱い材料の形態の記録
- ⑥個人被ばく線量計あるいはその他の測定器による被ばく記録
- ⑦ゴーグル,マスク,手袋,衣服の使用状況の記録
- ⑧作業前後の場所の表面汚染度のサーベイメーターによる計測と除染結果
- ⑨作業前後の汚染の記録(手指,頭髪,鼻,腹部,足部等)
- ⑩作業後の手洗い, うがいなどの実施の記録
- ①作業日誌,実験ノートの保存

9. 原材料等の管理

実施責任者は、原材料等に係る次に掲げる事項について管理しなければならない。

- ①保管庫からの放射線漏洩の低減処置
- ②粉塵対応設備の設置 (人体内蓄積の防止)
- ③試料移動用容器の確保
- ④原材料等による汚染廃棄物の処分
- ⑤利用器材及び分析機器の汚染測定と除染結果
- ⑥放射性物質及び汚染廃棄物の学外返却方法等については、搬入者(事業者)と事前に 協議し、受け取り先を含め、予め確定する。

10. 事故等の報告

実施責任者は、自主管理区域内において発生した如何なる事故についても、工学部安全 衛生管理者へ速やかに報告しなければならない。

平成22年4月1日 規則第 28

国立大学法人愛媛大学職員安全衛生規程(平成16年規則第77号)の全部を改正する。

第1章 総則

(趣旨)

- 第1条 国立大学法人愛媛大学(以下「本学」という。)における安全衛生管理については、労働安全衛生法(昭和47年法律第57号。以下「安衛法」という。)、学校保健安全法(昭和33年法律第56号)その他関係法 令(以下「法令等」という。)及び就業規則に定めるもののほか、この規程の定めるところによる。 (定義)
- 第2条 この規程において、次の各号に掲げる用語の定義は、当該各号に定めるところによる。
 - (1)職員 第5号の就業規則の適用を受ける者をいう。
 - (2) 学生等 学部学生及び大学院学生,研究生,科目等履修生,聴講生,特別聴講学生,受託研究生,特別 研究学生、外国人留学生、附属学校園の生徒等をいう。
 - (3) 事業場 別表第1の事業場の欄に掲げる事業場をいう。
 - (4) 部局 別表第1の部局等の欄に掲げる部局及び地区をいう。
 - (5) 就業規則 国立大学法人愛媛大学職員就業規則, 国立大学法人愛媛大学特定職員就業規則, 国立大学法 人愛媛大学有期契約職員就業規則及び国立大学法人愛媛大学短期契約職員就業規則をいう。 (本学の責務)
- 第3条 本学は,法令等の定めるところに従い,職員及び学生等の健康の保持増進及び安全の確保に必要な措置 を講じる。

(職員及び学生等の責務)

第4条 職員及び学生等は,労働災害及び学内での災害を防止するため必要な事項を守るほか,本学その他関係 者が講ずる健康の保持増進及び安全の確保のための措置に協力しなければならない。

第2章 安全衛生管理体制

第1節 全学総括安全衛生管理者等

(全学総括安全衛生管理者)

- 第5条 本学に,本学における安全衛生管理を総括するために,全学総括安全衛生管理者を置く。
- 全学総括安全衛生管理者は、担当理事又は副学長をもって充てる。

(全学総括安全衛生管理者の職務)

- 第6条 全学総括安全衛生管理者は、全学の職員及び学生等の安全及び衛生を統括管理するために、次の各号に 掲げる職務を統括管理するものとする
 - (1) 安全衛生に関する方針の表明に関すること。
 - (2) 安全衛生に関する計画の作成、実施、評価及び改善に関すること。
 - (3)職員及び学生等の危険又は健康障害を防止するための措置に関すること。
 - (4) 職員及び学生等の安全又は衛生のための教育の実施に関すること。
 - (5) 健康診断等の実施その他健康の保持増進のための措置に関すること。
 - (6) 労働災害の原因の調査及び再発防止に関すること。

 - (7) 危険性・有害性等の調査及びその結果に基づき講ずる措置に関すること。 (8) 前各号に掲げるもののほか、職員及び学生等の安全及び衛生に関すること。
- 全学総括安全衛生管理者は、全学の安全衛生管理水準の向上を図るため、全学総括安全衛生管理者補佐(以 下「全学総括管理者補佐」)を置くことができる。
- 全学総括管理者補佐に関し必要な事項は, 別に定める。

(総括安全衛生管理者)

- 第7条 本学に、安衛法第10条の規定に基づき、別表第1の事業場ごとに、総括安全衛生管理者を置く。
- 総括安全衛生管理者は、各事業場に所属する職員のうち当該事業場の業務について実質的に総括する権限及 び責任を有する者をもって充てる。

(総括安全衛生管理者の職務)

第8条 総括安全衛生管理者は、次条及び第12条に規定する安全衛生管理者及び安全衛生管理担当者を指揮す るとともに、当該事業場において第6条各号に掲げる職務を統括する。

(安全衛生管理者)

- 第9条 本学に,安衛法第12条の規定に基づき,別表第1の事業場ごとに,衛生管理者(以下「安全衛生管理 者」という。)を置く。
- 安全衛生管理者は、各事業場に所属する職員で労働安全衛生規則(昭和47年労働省令第32号。以下「安 衛則」という。) 第7条第1項第3号ロに該当する者(以下「有資格者」という。) のうちから, 安衛則第7条 第1項第4号の規定に基づく人数を学長が選任する。ただし、城北事業場及び樽味事業場にあっては、別表第 1の部局安全衛生管理者のうちから選任するものとし,重信事業場及び持田事業場にあっては,別表第1の「部 局安全衛生管理者」を「安全衛生管理者」と読み替え、安全衛生管理者欄に掲げる当該組織等の区分ごとに選 任する。
- 城北事業場及び重信事業場にあっては,前項の安全衛生管理者のうち1人は専任の安全衛生管理者(以下「専 任安全衛生管理者」という。)とし、衛生工学衛生管理者免許を有する者をもって充てる。

4 安全衛生管理者の任期は、2年とし、再任は妨げない。ただし、安全衛生管理者に欠員が生じた場合の後任者の任期は、前任者の残任期間とする。

(安全衛生管理者の職務)

- 第10条 安全衛生管理者は、総括安全衛生管理者の指揮を受け、総括安全衛生管理者の職務のうち、安全及び衛生に関する具体的事項を管理するため、毎週1回作業場等を巡視し、次の各号に掲げる職務を行うものとする。
 - (1) 建設物,設備,作業場所等又は作業方法に危険がある場合における応急措置又は適当な防止の措置に関すること。
 - (2) 設備,作業方法又は衛生状態に有害のおそれがある場合における職員及び学生等の健康障害を防止するための措置に関すること。
 - (3) 作業条件,施設等の衛生上の改善に関すること。
 - (4)健康に異常のある者の発見及び措置に関すること。
 - (5) 安全装置、保護具その他危険防止のための設備・器具の定期的点検及び整備に関すること。
 - (6) 労働衛生保護具、救急用具等の点検及び整備に関すること。
 - (7) 作業主任者その他安全に関する補助者の監督に関すること。
 - (8) 安全衛生日誌の記載等職務上の記録の整備に関すること。
 - (9) 衛生教育,健康相談その他職員及び学生等の健康保持に必要な事項に関すること。
 - (10) 安全衛生に関する資料の作成、収集及び重要事項の記録に関すること。
 - (11) 作業等の安全についての教育及び訓練に関すること。
 - (12) 消防及び避難の訓練に関すること。
 - (13) 発生した災害原因の調査及び対策の検討に関すること。
 - (14) 作業等環境の衛生上の調査に関すること。
 - (15) 職員及び学生等の負傷及び疾病、それによる死亡、欠勤、異動及び欠席に関する統計の作成に関すること。
- 2 学長は、安全衛生管理者に対し、安全衛生に関する措置をなし得る権限を付与する。

(専任安全衛生管理者の職務)

- 第11条 第9条第3項により選任された専任安全衛生管理者は、前条第1項各号の職務を行うほか総括安全衛生 管理者の指揮を受け、総括安全衛生管理者の職務のうち衛生工学に関する具体的事項を管理するため、次の各 号に掲げる職務を行うものとする。
 - (1) 作業方法の衛生工学的改善に関すること。
 - (2) 作業環境の測定(作業環境測定法に基づく指定作業場の測定を除く。)に関すること。
 - (3) 作業環境内の労働衛生関係施設の設計,施工,点検及び改善に関すること。

(安全衛生管理担当者)

- 第12条 本学に、別表第1の事業場ごとに安全衛生管理担当者を置く。
- 2 安全衛生管理担当者は、各事業場における職員及び学生等の安全及び衛生に関する事務を所掌するチームリーダー(これと同等の職員を含む。)をもって充てる。ただし、城北事業場にあっては、施設基盤部安全環境 課安全衛生管理チームリーダーをもって充てる。

(安全衛生管理担当者の職務)

第13条 安全衛生管理担当者は、総括安全衛生管理者及び安全衛生管理者の職務に関する事務を補助するものとする。ただし、城北事業場の安全衛生管理担当者は、全学総括安全衛生管理者の職務に関する事務も補助するものとする。

(部局の安全衛生管理)

- 第14条 城北事業場及び樽味事業場の部局ごとに、別表第1のとおり次の各号に掲げる責任者等を置く。
 - (1) 安全衛生管理責任者
 - (2) 部局安全衛生管理者
 - (3) 部局安全衛生管理担当者
- 2 安全衛生管理責任者は、部局の業務について実質的に総括する権限及び責任を有する者をもって充てる。
- 3 城北事業場の部局安全衛生管理者(以下「部局管理者」という。)は、当該部局に所属する職員のうち有資格者又は全学総括安全衛生管理者が安全衛生に関する有識者(以下「有識者」という。)と認める者のうちから全学総括安全衛生管理者が選任し、樽味事業場の部局管理者は、当該部局に所属する職員のうち有資格者又は安全衛生管理責任者が有識者と認める者のうちから安全衛生管理責任者が選任する。
- 4 部局管理者の任期は,2年とし,再任は妨げない。ただし,部局管理者に欠員が生じた場合の後任者の任期 は,前任者の残任期間とする。
- 5 部局安全衛生管理担当者(以下「部局担当者」という。)は、当該部局に所属する職員で部局における職員 及び学生等の安全及び衛生に関する事務を所掌するチームリーダー(同等の職員を含む。)をもって充てる。
- 6 事業場に複数の部局がある場合又は事業場の一の建物内に複数の部局の施設がある場合は、部局管理者及び 部局担当者については、当該部局で協議の上、共同して選任することができる。

(安全衛生管理責任者の職務)

第15条 安全衛生管理責任者は、部局管理者及び部局担当者を指揮するとともに、当該部局において第6条各号に掲げる職務を統括管理する。

(部局管理者の職務)

- 第16条 部局管理者は、安全衛生管理責任者の指揮を受け、安全衛生管理責任者の職務のうち、安全及び衛生に関する具体的事項を管理するため、毎週1回作業場等を巡視し、当該部局において第10条第1項各号に掲げる職務を行う。
- 2 前項の部局管理者の職務は,委任する職務の範囲及び管理する職員及び学生等の範囲を定め,安全衛生管理 責任者が当該部局に所属する有資格者又は有識者に委任できるものとする。 (部局担当者の職務)

- 第17条 部局担当者は、安全衛生管理責任者及び部局管理者の職務に関する事務を補助するものとする。 (産業医)
- 第18条 本学に,安衛法第13条の規定に基づき,別表第1の事業場ごとに,産業医を置く。
- 2 産業医は、医師免許を受けた者で安衛則第14条第2項の要件を備えた職員のうちから学長が選任する。この場合において、城北事業場及び重信事業場にあっては、各事業場に所属する職員のうちから選任し、樽味事業場及び持田事業場にあっては、本学に所属する職員のうちから選任する。
- 3 前項の規定にかかわらず、必要な場合は、前項の資格を有する学外の医師に産業医を委嘱することができる。
- 4 産業医の任期は、2年とし、再任は妨げない。ただし、産業医に欠員が生じた場合の後任者の任期は、前任者の残任期間とする。
- 5 学長は、産業医が辞任したとき又は産業医を解任したときは、遅滞なく、その旨及びその理由を第22条に 規定する安全衛生全学委員会に報告するものとする。

(産業医の職務等)

- 第19条 産業医は、職員の健康障害の防止及び健康保持に関する具体的事項を管理するため、毎月1回作業場を 巡視し、次の各号に掲げる職務を行うものとする。
 - (1) 作業方法又は衛生状態に有害のおそれがある場合における職員の健康障害を直ちに防止するための措置に関すること。
 - (2) 作業環境の維持管理に関すること。
 - (3) 作業の管理に関すること。
 - (4)健康診断の実施及びその結果に基づく職員の健康を保持するための措置に関すること。
 - (5) 心理的な負担の程度を把握するための検査(以下「ストレスチェック」という。)を受検し、その結果 の通知を受けた者からの相談対応に関すること及び面接指導結果に基づく職員の健康を保持するための措 置に関すること。
 - (6) 長時間労働者の面接指導及びその結果に基づく職員の健康を保持するための措置に関すること。
 - (7) 前各号のほか職員の健康管理に関すること。
 - (8) 健康教育,健康相談その他職員の健康の保持増進を図るための措置に関すること。
 - (9) 衛生教育に関すること。
 - (10) 職員の健康障害の原因の調査及び再発防止のための措置に関すること。
 - (11) 前各号に掲げる事項についての総括安全衛生管理者に対する勧告又は安全衛生管理者への指導若しくは助言に関すること。
 - (12) 職員の健康を確保する必要があると認めるときの職員の健康管理等についての学長に対する勧告。
 - (13) 第1号から第10号までに掲げる事項を実施するために必要な情報を職員から収集すること。
 - (14) 職員の健康を確保するため緊急の必要がある場合において、職員に対して必要な措置を取るべきことを 指示すること。
 - (15) 学長又は総括安全衛生管理者に対して意見を述べること。
- 2 産業医は、前項第12号の勧告をしようとするときは、あらかじめ、当該勧告の内容について、学長の意見を求める。
- 3 産業医は、職員の健康管理等を行うために必要な医学に関する知識及び能力の維持・向上に努め、その知識に基づいて、誠実にその職務を行うものとする。
- 4 学長及び総括安全衛生管理者は、第1項第10号から第12号までの勧告を受けたときは、これを尊重する。
- 5 学長は、産業医に対し、第1項各号に規定する事項をなし得る権限を付与する。
- 6 学長は,産業医に対し,職員の労働時間に関する情報その他の産業医が職員の健康管理等を適切に行うため に必要な情報として,次の各号に掲げる情報を提供する。
 - (1) 第1項第4号から第6号までに掲げる事項について、既に講じた就業場所等の変更、作業等の転換、労働時間の短縮等の必要な措置又は講じようとするこれらの措置の内容。ただし、これらの措置を講じない場合にあっては、その旨及びその理由
 - (2) 長時間労働者の氏名及び時間外・休日労働時間に関する情報
 - (3) 前2号に掲げるもののほか、職員の業務に関する情報であって産業医が職員の健康管理等を適切に行うために必要と認めるもの
- 7 学長は,第1項第12号の勧告を受けたときは,次の各号に掲げる事項を記録し,これを3年間保存するも のとする。
 - (1) 当該勧告の内容
- (2)当該勧告を踏まえて講じた措置の内容。ただし,措置を講じない場合にあっては,その旨及びその理由 8 学長は,第1項第12号の勧告を受けたときは,遅滞なく,次の各号に掲げる事項を第22条に規定する安 全衛生全学委員会に報告する。
 - (1) 当該勧告の内容
 - (2) 当該勧告を踏まえて講じた措置又は講じようとする措置の内容。ただし、措置を講じない場合にあって は、その旨及びその理由
- 9 学長は、産業医による職員の健康管理等の適切な実施を図るため、産業医が職員からの相談に応じ、適切に 対応するために必要な体制の整備その他の必要な措置を講じるように努めるものとする。
- 10 本学は、各事業場における産業医の業務の内容その他の産業医の業務に関する事項を作業場の見やすい箇所 に掲示する等により職員に周知する。 (学校医)
- 第20条 本学及び附属学校園に、学校保健安全法に基づき、学校医を置く。
- 2 本学の学校医は、総合健康センター所属の医師をもって充てる。

(作業主任者)

第21条 本学は、安衛法に基づき作業主任者を選任したときは、当該作業主任者の氏名及びその者に行わせる事 項を作業場の見やすい箇所に掲示する等により関係職員及び学生等に周知する。

第2節 安全衛生全学委員会等

(安全衛生全学委員会)

- 第22条 本学に、安全衛生全学委員会(以下「全学委員会」という。)を置く。
- 2 全学委員会は、各事業場の安全衛生に関する次条第2項各号に掲げる事項のうち全学的なものについて調査、 審議し、学長に意見を述べることができる。
- 3 全学委員会は、次の各号に掲げる委員をもって構成する。
 - (1) 全学総括安全衛生管理者
 - (2) 各事業場の総括安全衛生管理者
 - (3) 城北事業場及び重信事業場の専属の産業医
 - (4) 各事業場の専任安全衛生管理者及び専任と同等の安全衛生管理者
 - (5)総合健康センター長
 - (6) 第10項第1号から4号までに規定する各分科会の会長
 - (7) 総務部長
 - (8) 施設基盤部長
 - (9)教育学生支援部長
- 全学委員会の委員長は、前項第1号の委員をもって充てる。
- 委員長は,委員会を招集し,その議長となる。
- 全学委員会は、原則として年4回開催する。ただし、委員長が必要と認めたときは臨時に開催することがで きる。
- 全学委員会は、委員の3分の2以上の出席がなければ開催することができない。
- 議事は、出席委員の3分の2以上をもって決する。
- 委員長が必要と認めるときは、委員以外の者を全学委員会に出席させることができる。ただし、議決には加 わることができない。
- 10 全学委員会に、次の各号に掲げる分科会(以下「各分科会」という。)を置く。
 - (1) 産業医分科会
 - (2) 化学物質管理分科会
 - (3) 高圧ガス適正管理分科会
 - (4) 安全衛生教育推進分科会
- 11 前項の各分科会に関し必要な事項は、別に定める。 12 委員長は、全学委員会の開催の都度、次の各号に掲げる事項について安全環境課に議事録を作成させ、これ を3年間保存するものとする。
 - (1) 意見及び当該意見を踏まえて講じた措置の内容
 - (2) 前号に掲げるもののほか、議事で重要なもの
- 13 産業医は、全学委員会に対して職員の健康を確保する観点から必要な調査審議を求めることができる。
- 14 この規程に定めるもののほか、全学委員会の運営等に関し必要な事項は、全学委員会が定める。 (事業場安全衛生委員会)
- 第23条 本学に、安衛法第18条の規定に基づき、事業場ごとに安全衛生委員会(以下「事業場委員会」という。) を置く
- 2 事業場委員会は、当該事業場における次の各号に掲げる事項を調査、審議し、学長に意見を述べることがで きる。
 - (1) 安全衛生に関する計画の作成、実施、評価及び改善に関すること。
 - (2) 職員及び学生等の危険を防止するための基本となるべき対策に関すること。
 - (3) 労働災害の原因及び再発防止対策で、安全衛生に係るものに関すること。
 - (4) 危険性・有害性等の調査及びその結果に基づき講ずる措置に関すること。
 - (5) 職員及び学生等の健康障害を防止するための基本となるべき対策に関すること。
 - (6) 職員及び学生等の健康の保持増進を図るための基本となるべき対策に関すること
 - (7)長時間にわたる労働による職員の健康障害の防止を図るための対策の樹立に関すること。
 - (8) 職員及び学生等の精神的健康の保持増進を図るための対策の樹立に関すること。
 - (9) 当該事業場における安全衛生に関する規程の作成に関すること。
 - (10) 安全衛生教育の実施計画の作成に関すること。
 - (11) 作業環境測定の結果及びその結果の評価に基づく対策の樹立に関すること。
 - (12) 前各号に掲げるもののほか、職員及び学生等の危険の防止、健康障害の防止及び健康の保持増進に関す る重要事項
- 3 事業場委員会は、次の各号に掲げる委員をもって構成する。
 - (1) 総括安全衛生管理者
 - (2) 安全衛生管理者
 - (3) 産業医
 - (4) 当該事業場の職員で安全衛生に関し経験を有するもののうち学長が指名した者
 - (5) 当該事業場の作業環境測定を実施している作業環境測定士のうち学長が指名した者
- 事業場委員会の委員長は,前項第1号の委員をもって充てる。
- 委員長は、委員会を招集し、その議長となる。
- 本学は、第3項第2号から第5号までの委員の半数については、当該事業場に職員の過半数で組織する労働

組合があるときにおいてはその労働組合、職員の過半数で組織する労働組合がないときにおいては職員の過半数を代表する者の推薦に基づき指名しなければならない。

- 7 第3項第4号及び第5号の委員の任期は、2年とし、再任は妨げない。ただし、委員に欠員が生じた場合の 後任者の任期は、前任者の残任期間とする。
- 8 事業場委員会は、月1回開催する。ただし、委員長が必要と認めたときは臨時に開催することができる。
- 9 事業場委員会は、委員の過半数の出席がなければ開催することができない。
- 10 委員長は、事業場委員会の議事のうち、重要なものについて安全衛生管理担当者に議事録を作成させ、これを3年間保存するものとする。この場合において、当該議事録をその都度全学総括安全衛生管理者に報告するものとする。
- 11 この規程に定めるもののほか,事業場委員会の運営等に関し必要な事項は事業場委員会が定める。 (部局委員会)
- 第24条 各部局ごとに委員会等(以下「部局委員会」という。)を置く。
- 2 部局委員会の構成員は、部局管理者及び安全衛生管理責任者が指名した有資格者又は有識者とする。
- 3 部局委員会は、前条第2項各号に掲げる事項のうち当該部局に関連するものについて調査、審議し、安全衛生管理責任者に意見を述べるものとし、当該部局の所属する事業場又は全学に関連する事項については、当該事業場の総括安全衛生管理者に報告するものとする。
- 4 第1項の規定にかかわらず、部局が必要と認めるときは、複数の部局が共同して一の部局委員会を置くことができる。
- 5 委員長は、部局委員会の議事のうち、重要なものについて部局担当者に議事録を作成させ、これを3年間保存するものとする。
- 6 この規程に定めるもののほか, 部局委員会の運営等に関し必要な事項は部局委員会が別に定める。 (安全衛生管理者等に対する教育等)
- 第25条 本学は、事業場における安全衛生の水準の向上を図るため、安全衛生管理者等その他労働災害等の防止 のための業務等に従事する者に対し、これらの者が従事する業務等に関する能力の向上を図るための教育、講 習等を行い、又はこれを受ける機会を与える措置を講じる。

第3章 職員及び学生等の危険又は健康障害を防止するための措置

(危険防止のために講ずべき措置)

第26条 全学総括安全衛生管理者,総括安全衛生管理者及び安全衛生管理責任者(以下「安全衛生管理責任者等」 という。)は、危険を防止するため法令等に定める必要な措置を講じるものとする。

(有害な業務等に係る措置)

第27条 安全衛生管理責任者等は,職員及び学生等の健康障害を防止するため法令等に定める必要な措置を講じるものとする。

(勤務環境等について講ずべき措置)

- 第28条 安全衛生管理責任者等は、職員及び学生等を就業等させる作業場等について、職員及び学生等の健康保持のため法令等に定める必要な措置を講じるものとする。
- 第29条 安全衛生管理責任者等は、職員及び学生等の作業方法から生ずる危険を防止するため法令等に定める必要な措置を講じるものとする。

(緊急事態に対する措置)

- 第30条 安全衛生管理責任者等は,職員及び学生等に対する労働災害等発生の危険が急迫したときは,当該危険 に係る場所並びに職員及び学生等の業務等の性質等を考慮して,業務等の中断,職員及び学生等の退避,緊急 連絡,救急活動,消火作業その他の危険拡大防止の緊急作業及び危険場所への立入禁止等適切な措置を講じる ものとする。
- 2 安全衛生管理責任者等は、前項の措置を的確かつ円滑に講ずることができるようにするため、設備等の整備、 職員及び学生等の訓練等の措置を行うものとする。

(職員及び学生等の遵守義務)

第31条 職員及び学生等は、本学が第26条から前条までの規定に基づき講ずる措置に応じて、法令等に定める 必要な事項を守らなければならない。

(有害物質の使用等の制限)

- 第32条 安全衛生管理責任者等は、職員及び学生等に重度の健康障害を生ずる物で施行令第16条第1項に規定するものを製造し、輸入し、譲渡し、提供し、又は使用させてはならない。ただし、試験研究のため製造し、輸入し、又は使用する場合で、施行令第16条第2項に規定する要件に該当するときは、この限りではない。(安全衛生管理責任者等が行うべき調査等)
- 第33条 安全衛生管理責任者等は、化学物質、化学物質を含有する製剤その他の物で、職員及び学生等の健康障害を生ずるおそれのあるものについては、あらかじめ、これらの物の有害性等を調査し、その結果に基づいて、法令等の規定による措置を講ずるほか、これらの物による職員及び学生等の健康障害を防止するため必要な措置を講ずるものとする。

第4章 職員及び学生等の就業等に当たっての措置

(安全衛生教育)

- 第34条 安全衛生管理責任者等は,職員及び学生等に対し,法令等で定めるところにより,その従事する業務等に関する安全又は衛生のための教育を行うものとする。
- 2 安全衛生管理責任者等は、職員及び学生等の労働災害防止等に関する法令が制定され、又は改正された場合若しくは職員及び学生等の労働災害等が発生した場合等においては、関係職員及び学生等に対して安全衛生教育を行うものとする。

(安全衛生水準の向上)

第35条 安全衛生管理責任者等は、事業場における安全衛生の水準の向上を図るため、危険又は有害な業務に現に就いている者に対し、その従事する業務に関する安全又は衛生のための教育を行うものとする。

(中高年齢職員等に対する配慮)

36条 安全衛生管理責任者等は、中高年齢職員、虚弱者及び身体障害者等の職員及び学生等については、配置業務等の遂行方法等に関して心身の条件を十分に考慮する。

第5章 健康の保持増進のための措置

(作業環境測定)

- 第37条 安全衛生管理責任者等は、有害業務の行われる作業場等で法令等で定めるものについて、法令等の定めるところにより、必要な作業環境測定を行い、その結果について記録を作成し、評価するものとする。
- 2 安全衛生管理責任者等は,前項の結果の評価に基づき,職員及び学生等の健康を保持するため必要があると 認められるときは,法令等の定めるところにより,施設若しくは設備の設置又は整備,健康診断の実施その他 の適切な措置を講じるものとする。
- 3 安全衛生管理責任者等は、有害業務以外の業務で職員及び学生等の健康障害を生ずるおそれのあるものの有無について随時調査し、職員及び学生等の健康障害を防止する必要があると認めるときは、適切な措置を講じるものとする。

(作業の管理)

第38条 安全衛生管理責任者等は、職員及び学生等の健康に配慮して、職員及び学生等の従事する作業等を適切に管理するものとする。

(職員及び学生等の健康診断)

- 第39条 本学は、職員及び学生等に対し、法令等の定めるところにより、健康診断を行う。
- 2 本学は、前項の健康診断において、法令等で定める健康診断の項目のほか、本学が必要と認める項目についても行うことがある。
- 3 職員及び学生等は、第1項の規定により本学が行う健康診断を受けなければならない。ただし、職員で本学の指定した健康診断を受けることを希望しない場合において、他の医師の行うこれらの規定による健康診断に相当する健康診断を受け、その結果を証明する書面を本学に提出したときは、この限りでない。

(臨時の健康診断)

- 第40条 本学は、前条の健康診断のほか、次の各号に掲げる場合には、臨時に職員及び学生等の健康診断を行う。
 - (1) 伝染性疾患の流行又は流行のおそれのある場合
 - (2) 特定の職場等で身体の異常を訴える者又は病気による休暇をとる者が多い場合
 - (3) 精神障害のため自身を傷つけ、又は他の職員及び学生等に危害を及ぼすおそれがある場合
 - (4) ガス等により急性中毒にかかった場合
 - (5)健康診断の検査の項目につき、職員及び学生等が自ら医師の診断を受け、診断書を提出した場合において、必要と認めるとき。
 - (6) 第44条の規定による健康診断実施後の措置の変更に関し、必要と認めるとき。
 - (7) 前各号に掲げるもののほか、産業医又は学校医が必要と認めるとき。

(健康診断における検査の省略)

- 第41条 本学は、職員が第39条の健康診断の実施時期前の近接した時期に当該健康診断の検査の項目の全部又は一部について医師の検査を受けている場合において、その検査がこれらの規定に基づく健康診断における検査の基準に適合していると認めるときは、その検査をもって当該健康診断における検査に代える。
- 2 本学は、職員が第39条の健康診断の実施時期に近接した時期に総合健診を受ける場合において、当該健康 診断の検査の項目について当該総合健診の検査の結果を利用することができると認めるときは、その検査をも って当該健康診断における検査に代える。
- 3 第1項の「健康診断の実施時期前の近接した時期」は、その実施時期前3月の範囲内で、職員が受けた検査 の種類に応じて、産業医の意見を聞いて判断する。
- 4 第2項の「健康診断の実施時期に近接した時期」は、一般定期健康診断にあってはその実施時期の前後おおむね6月、特別定期健康診断にあってはその実施時期の前後おおむね3月の範囲内の期間とする。 (健康診断の結果の記録)
- 第42条 本学は、法令等の定めるところにより、健康診断の結果を記録し、その結果を職員及び学生等に対し通知するものとする。

(健康診断の結果についての医師等からの意見聴取)

- 第43条 本学は、健康診断の結果(当該健康診断項目に異常の所見があると診断されたものに限る。)に基づき、 当該職員の健康を保持するために必要な措置について、法令等の定めるところにより、医師の意見を聴く。 (健康診断実施後の措置)
- 第44条 本学は、前条の規定による医師の意見を勘案し、その必要があると認めるときは、当該職員等の実情を考慮して、就業場所等の変更、作業等の転換、労働時間の短縮等の必要な措置を講ずるほか、作業環境測定の実施、施設又は設備の設置又は整備その他適切な措置を厚生労働大臣の公表した指針により講じる。 (保健指導等)
- 第45条 本学は、健康診断の結果、特に健康の保持に努める必要があると認める職員及び学生等に対し、保健指導を行う。
- 2 職員及び学生等は、健康診断の結果及び前項の保健指導を利用して、その健康の保持に努めなければならない。

(病者の就業等禁止)

第46条 本学は、伝染性疾病その他の疾病で、法令等の定めるものにかかった職員及び学生等については、法令

等の定めるところにより、その就業等を禁止する。

(心身の状態に関する情報の取扱い)

第46条の2 本学は、職員の心身の状態に関する情報を収集し、保管し、又は使用するに当たっては、職員の健康の確保に必要な範囲内で職員の心身の状態に関する情報を収集し、並びに当該収集の目的の範囲内でこれを保管し、及び使用する。ただし、本人の同意がある場合その他の正当な理由がある場合はこの限りでない。 2 職員の心身の状態に関する情報の取扱いに係る必要な事項は、別に定める。

第6章 快適な職場等環境の形成のための措置

(職員のストレスチェック)

- 第47条 本学は、職員に対し、法令等の定めるところにより、ストレスチェックを行う。
- 2 ストレスチェックに関し必要な事項は、別に定める。

(本学の講ずる措置)

- 第48条 学長は、事業場等の安全衛生の水準の向上を図るため、次の各号に掲げる措置を継続的かつ計画的に講ずることにより、快適な職場等環境を形成するよう努める。
 - (1) 作業等環境を快適な状態に維持管理するための措置
 - (2) 職員及び学生等の従事等する作業についてその方法を改善するための措置
 - (3) 作業に従事等することによる職員及び学生等の疲労を回復するための施設又は設備の設置又は整備
 - (4) 前3号に掲げるもののほか、快適な職場等環境を形成するための措置

第7章 雑則

(法令等の周知)

第49条 本学は、法令等及びこれに基づく命令の要旨を職員が常時確認できる方法により職員に周知する。 (秘密の保持)

第50条 職員及び学生等の健康診断,長時間労働者の面接指導並びにストレスチェックにかかる検査及び面接指導の実施の事務に従事した者は、その実施に関して知り得た職員及び学生等の心身の秘密を漏らしてはならない。

(雑則)

第51条 この規程に定めるもののほか,職員及び学生等の安全及び衛生管理に係る必要な事項は、別に定める。

附則

この規程は、平成22年4月1日から施行する。

附 則

この規程は、平成23年4月1日から施行する。

附則

この規程は、平成24年4月1日から施行する。

附則

この規程は、平成26年10月1日から施行する。

附則

この規程は、平成27年4月1日から施行する。

附則

- 1 この規程は、平成28年4月1日から施行する。
- 2 国立大学法人愛媛大学安全衛生管理特別部会要項(平成22年規則第113号)は,廃止する。

附則

この規程は、平成29年4月1日から施行する。

附則

この規程は、平成31年4月1日から施行する。

別表第1 管理者等を置く組織区分(第7条, 第9条, 第12条, 第14条, 第18条関係)

事業		部局等	安全衛生管理責任者	部局安全衛生管理者	部局安全衛生管理担当者
		法文学部	法文学部	法文学部	法文学部
		教育学部	教育学部	教育学部	教育学部
		社会共創学部	社会共創学部	社会共創学部	社会共創学部
		理学部	理 学 部	理 学 部	理 学 部
		工学部	工学部	工学部	工学部
		社会連携推進機構	社会連携推進機構	社会連携推進機構	社会連携推進機構
城	北	先端研究・学術推進機構	先端研究・学術推進機構	先端研究・学術推進機構	研究支援部
		教育・学生支援機構	教育・学生支援機構		
		国際連携推進機構	国際連携推進機構	部局で協議の上決定	部局で協議の上決定
		図書館	図書館		
		総合健康センター	総合健康センター		
		ミュージアム	ミュージアム		
		大学本部	大学本部	大学本部	安全環境課
	信	重信地区	重信地区	医学系研究科臨床系	
				医学系研究科基礎系	
重				医学部附属病院診療科の組織	
				医学部附属病院の上記以外の組織	
				上記以外の組織	
	味	農学部	農学部	農学部及び下記以外の組織	農 学 部
樽				附属農場	
		附属高等学校	附属高等学校	附属高等学校	附属高等学校
持	田	持田地区	持田地区	附属小学校	
				附属特別支援学校	
				附属教育実践総合センター	
				附属幼稚園 附属中学校	
				門馬甲子仪	

備考 重信事業場及び持田事業場にあっては、別表第1中「部局安全衛生管理者」とあるのは「安全衛生管 理者」と読み替える。

愛媛大学大学院理工学研究科(工学系)の各種委員会に関する規程(平成18年4月1日制定)(抜粋)

第1条 この規程は、愛媛大学大学院理工学研究科(工学系)(愛媛大学工学部を含む。以下「研究科(工学系)」 という。)

に、研究科(工学系)に係る特定の事項(愛媛大学の諸規則に基づくものを含む。)について審議及び実施するため、愛媛大学大学院理工学研究科工学系会議又は工学系運営委員会の下に委員会を置き、当該委員会に関し必要な事項を定める。

第2条 研究科(工学系)に置く委員会については、別表のとおりとする。

附則

- 1 この規程は、平成18年4月1日から施行する。
- 2 この規程の施行に伴い、愛媛大学工学部自己点検評価委員会内規(平成16年4月1日制定)、愛媛大学工学部教員個人評価実施委員会内規(平成16年6月17日制定)、愛媛大学工学部安全衛生委員会内規(平成16年5月20日制定)、愛媛大学工学部遺伝子組換え実験安全委員会内規(平成16年4月1日制定)、愛媛大学工学部教務学生委員会内規(平成16年4月1日制定)、愛媛大学工学部入試委員会内規(平成17年4月1日制定)、愛媛大学工学部広報委員会内規(平成16年4月1日制定)、愛媛大学工学部情報セキュリティ委員会内規(平成16年6月17日制定)、愛媛大学工学部就職指導委員会内規(平成16年4月1日制定)、愛媛大学工学部FD委員会内規(平成16年4月1日制定)、及び愛媛大学工学部入学者選抜試験合否判定方法調査検討委員会に関する申合せ(平成16年4月1日制定)は、廃止する。

附則

この規程は、平成20年4月1日から施行する。 附 則

この規程は、平成23年2月17日から施行する。 附 則

この規程は、平成25年4月1日から施行する。

この規程は、平成29年4月1日から施行する。 附 則

この規程は、平成30年4月1日から施行する。

附 則

- 1 この規程は、平成31年4月1日から施行する。
- 2 この規程の施行に伴い、愛媛大学大学院理工学研究科(工学系)中期計画・年度計画委員会規程(平成18年4月20日制定)、愛媛大学大学院理工学研究科(工学系)大学認証評価委員会規程(平成18年5月18日制定)、愛媛大学大学院理工学研究科(工学系)建物委員会規程(平成21年4月1日制定)及び愛媛大学大学院理工学研究科(工学系)国際連携委員会規程(平成22年10月21日制定)は、廃止する。

附 則

この規程は、令和2年4月1日から施行する。

別表 (第2条関係)

委員会名	愛媛大学大学院理工学研究科(工学系)安全衛生委員会
設置・目的	研究科(工学系)における職員及び学生の安全と衛生の確保を目的とする。
審議事項等	次の各号に掲げる事項について立案・審議する。 (1) 職員及び学生の危険を防止するための基本となるべき対策に関すること。 (2) 労働災害の原因及び再発防止対策で、安全衛生に係るものに関すること。 (3) 職員及び学生の健康障害を防止するための基本となるべき対策に関すること。 (4) 安全衛生教育に関すること。 (5) その他工学系長の諮問する事項に関すること。
組織	(1) 工学系長が指名する教授 1人 (2) 専攻の各コースから選出された衛生管理者の資格を有する職員 各1人 (3) 工学系長が指名する職員 若干人 (4) 工学部事務課長
委員任期	2年 委員欠員の場合の任期は、前任者の残任期間
委員の再任	可
委員長・議長	(1) 工学系長が指名する教授 (「組織」欄の (1) の委員)
議事 要件等	委員の3分の2以上の出席
委員以外の者の出席	説明又は意見聴取は可
常置の専門委員会	
専門委員会	
他の委員会等の関連	
事務	工学部事務課 (総務チーム・経理系)
雑則	委員会が定める。
最近改正	H20. 4. 1

実験室等における実験及び実習等のリスクアセスメントに関するガイドライン

令和3年4月14日 制 定

(趣旨)

大学として、消防法、労働安全衛生法、高圧ガス保安法等の関係法令、及び本学規程等を遵守し、防火防災に徹した上で、安全な管理体制で教育研究活動を行う必要がある。自由な発想による研究のための実験及び実習(以下「実験等」という。)は、実験室等管理責任者が実験室等の危険性を把握した上でその結果を研究室等の全構成員に周知するとともに、個々の実験責任者が実験等ごとにリスクアセスメントを実施した上で行われるものである。

本学の実験室等の危険性の把握及び実験等ごとのリスクアセスメントに関しては、本ガイドラインによるものとする。実験室等管理責任者及び実験責任者は、本ガイドラインの定めに基づきリスクアセスメントを実施し、安全な管理体制の下で実験等を行わなければならない。また、安全衛生管理責任者(部局等の長。以下同じ。)は、以下に掲げる実験室等の危険物等保管状況等をとりまとめて学長に報告するものとし、学長は防災上の安全確保に備えて、当該危険物等保管状況等を活用する。

1. 安全衛生教育

実験室等管理責任者は、実験等が始まる前に、研究室等の関係する構成員に対して、以下に掲げる(1)から(5)について教育しなければならない。また、教育実施後は、その結果を安全衛生管理責任者に届け出なければならない。

- (1) 全ての実験等の実施における作業手順の作成方法に関すること。
- (2) 化学物質の適正な取扱方法及び管理方法に関すること。
- (3) 実験機器・実験装置等の適正な使用方法及び管理方法に関すること。
- (4) 有事の際の避難方法・研究室等構成員の役割分担・連絡体制に関すること。
- (5) 可燃性物質を取扱う構成員には、部局等で行う消防訓練へ1年に1回以上の参加を義務とすること。

2. 実験室等の危険物等保管状況及び火災のリスクの把握

各実験室管理責任者は、管理する実験室等で保管する以下に掲げる(1)、(2)、(3)の状況、及びそれらの火災のリスクと有事の際の対処法を把握しなければならない。

また、それらの結果を「実験室等の危険物等保管状況」(様式1)及び「火災に係る実験室等の火災の危険性把握に関するシート」(様式2)に記載する。

- (1) 化学物質のうち消防法の危険物に該当する物質の有無
- (2) 高圧ガス (可燃性・支燃性・毒性) の有無
- (3) 危険を伴う高温加熱(昇温作用がある)実験装置等の有無

3. 実験室等の危険物等保管状況及び火災のリスクの報告

実験室等管理責任者は、前項に掲げる様式1及び様式2について、安全衛生管理責任者の定める方法により、定期的に安全衛生管理責任者に提出しなければならない。安全衛生管理責任者は、その結果をまとめ、 学長に報告しなければならない。

4. 実験等に関するリスクアセスメントシートの作成

実験責任者は、実施する実験等ごとに「リスクアセスメントシート」(様式3)を作成しなければならない。 「リスクアセスメントシート」(様式3)の記入要領は、別に定める。

5. 危険物保管状況等の実験室外への掲示

実験室等管理責任者は、第2項第1号及び第2号に掲げるものが有の場合は、その情報を当該実験室外のわかりやすい場所に掲示しなければならない。また、当該掲示を要する実験室において、無人で実験等を実施する場合は、実験責任者が第2項第3号の稼働状況とともに前項に掲げる様式3を掲示しなければならない。

実験等に関するリスクアセスメントシートの記入要領

「実験室等における実験及び実習等のリスクアセスメントに関するガイドライン」の第4項に定めるリスクアセスメントシート(様式3)の作成については本要領による。

1. リスクアセスメントシートの記載事項

リスクアセスメントシートには、実験担当者が以下に掲げる事項を記入し、実験(実習)責任者(有資格者)の確認を得て作成しなければならない。

- (1) 加熱実験のうち、電気炉等の装置を使用する実験(別紙1に例示あり)
 - ア. 実験室名、eSAFE 場所 ID
 - イ. 実験名称・実験の概要
 - ウ. 実験実施日時
 - 工. 室内作業人数
 - オ. 使用する電気炉等の情報 (非加熱実験は不要)
 - カ. 実験室に関する情報
 - ①実験室内の見取り図 (室内の器具・危険物等の配置)
 - 実験台(作業場所)、実験機器、実験装置、高圧ガスボンベ等
 - ・化学物質保管庫(消防法危険物の有無)
 - 消火器
 - ・必要な保護具の種類と装備している場所

②教育

- ・リスク軽減措置の実施状況
- ・実験前に行った安全衛生教育
- ・リスク軽減措置等の安全対策
- ・火災報知器の点検月日
- ・設置消火器の種類
- ・その他特記事項(消防訓練の参加状況等)

キ. 実験に関する情報

- ①使用する化学物質(ガスを含む。)の使用量、発火点、引火点、SDS の確認状況
- ②電気炉等加熱装置の温度範囲、温度制御機能、防爆構造、事故防止機能
- ③想定される火災の危険性
- ④取扱う物質の危険性・有害性に対する保護具の種類
- ⑤消火方法(消火器の種類)
- ⑥有事の際の緊急連絡先(実験担当者及び実験責任者の連絡先を含む。)
- (2) 非加熱実験は、前号に掲げる事項のうち安全確保に関して必要な事項
- (3) 危険物及び化学物質を用いない(火災のリスクが少ない)実習及びフィールドワーク(以下「実習等」という。)は、第1号に掲げる事項を含めて実習等の安全確保に関して必要な事項

2. リスクアセスメントシートの実験(実習等)責任者となり得る有資格者

前項第1号及び第2号に掲げるリスクアセスメントシートの実験責任者となり得る有資格者とは、以下の(1)から(4)に掲げるいずれかの資格等を有する者とする。また、前項第3号に掲げるリスクアセスメントシートの実習責任者となり得る者は、以下の(5)に掲げる者とする。

- (1) 危険物取扱者(消防法)
- (2) 衛生工学衛生管理者 (労働安全衛生法)
- (3) 第一種衛生管理者 (労働安全衛生法)
- (4) 本学が行う危険物取扱に関する講習会等を受講した者
- (5) 当該実習等の専門の技能・資格を有する者又は知識・経験が豊富な者の中から、当該実習等の安全性 を判断できる者

あとがき

このたび、工学部安全衛生ハンドブックー第14版一が発行されるはこびとなりました。

平成6年に工学部「安全手帳ー初版ー」が発行され、3度の改訂の後、国立大学法人化を契機に安全手帳の全面的な見直しが行われ、平成17年4月に工学部「安全衛生手帳ー第1版ー」が刊行されました。

安全衛生手帳 - 第1版 - の編集方針は、学部学生・院生を主な対象者とした内容にすること、平易な言葉を用いイラストをいれて分りやすい表現にすること、学部学生・院生が健康で明るい大学生活を送るための、また安全に実験・実習を行う際のテキストとして利用できるようにすること、さらに安全手帳では学科別・実習別に記載されていた内容を電気系、機械系、化学系に分けて記載すること等でありました。

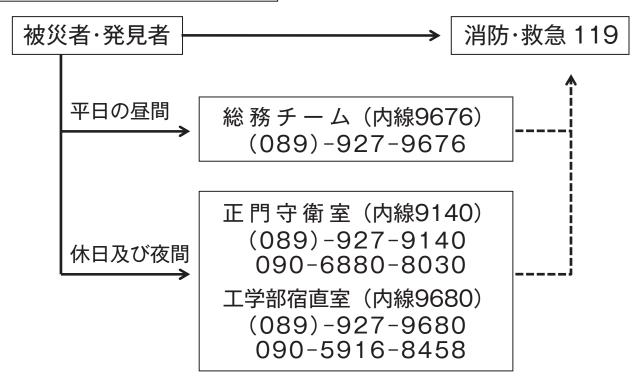
この後、毎年内容を充実していった結果、冊子の厚みも増えてきましたので、平成23年度からは「安全衛生ハンドブック」として発行することにいたしました。この安全衛生ハンドブックー第2版ーには、「愛媛大学大学院理工学研究科(工学系)におけるウラン又はトリウムを含む原材料等の安全確保に関するガイドライン」や平成22年4月に改訂された「国立大学法人愛媛大学安全衛生管理規程」、「愛媛大学大学院理工学研究科(工学系)安全衛生委員会規程」、「愛媛大学大学院理工学研究科(工学系)安全衛生委員会規程」、「愛媛大学大学院理工学研究科(工学系)安全衛生委員会規程」を追加しました。また一第3版ーでは、平成24年度に工学部で全学に先駆けて発足させた安全衛生学生委員の制度を追加いたしました。

安全衛生ハンドブックは、事故を回避するための対策・対応とともに、不幸にして地震、火災などの災害、事故などが発生した場合の適切な対処法を示しています。本安全衛生ハンドブックを有効に活用していただき、事故を未然に防ぐことに役立てていただければ幸いです。なお、ご使用に際し、不適切な表現、説明不足な箇所などお気づきの点がございましたら、今後に反映させたいと考えていますので、工学部安全衛生委員会にご連絡ください。

最後に、工学部安全衛生ハンドブックを作成するに当たり、下記の文献を参考にさせていただきました。深謝申し上げます。また、ケガの応急処置の編集に当たっては愛媛大学総合健康センターにお世話になりました。記して謝意を表します。

参考文献

愛媛大学工学部安全委員会編:安全衛生ハンドブックー第2版ー 東京工業大学安全管理実施委員会編:安全手帳ー第4版― 早稲田大学大久保構内安全衛生委員会:安全のてびき


令和6年3月

令和5年度愛媛大学工学部安全衛生委員会 委員長 森脇 亮

委 員 石丸 恭平

緊急時の連絡先(部屋名:

人身・火災等事故発生の場合

上記のところへ電話をかけ、状況を告げ、指示を受ける。

教員の緊急連 絡先(TEL)	
救急箱のある場所	

総合健康センター

愛大ミューズ 南側 1 階 (内線9193), TEL(089)-927-9193 利用時間 8:30~17:00 (土・日・祝日・夏季休業・年末年始の休日等を除く)

ケガや病気に対して医師の診察・処置・投薬を行っている。

これをコピーして実験室などに貼っておいてください。

緊急時の連絡先(愛媛大学工学部)

人身・火災等事故発生の場合

上記のところへ電話をかけ、状況を告げ、指示を受ける。

総合健康センター

愛大ミューズ 南側1階

(内線9193), TEL(089)-927-9193

ケガや病気に対して医師の診察・処置・投薬を行っている。

